THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
 (A CONSTITUENT COLLEGE OF JKUAT)
 Faculty of Engineering and Technology
 DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

HIGHER DIPLOMA IN BUILDING AND CIVIL ENGINEERING DIPLOMA IN BUILDING AND CIVIL ENGINEERING DIPLOMA IN CIVIL ENGINEERING AND CAD

EBC 2320/EBC3120 : HYDRAULICS

SPECIAL/SUPPLEMENTARY EXAMINATIONS

SERIES: MAY, 2011
TIME: 2 HOURS

Instructions to Candidates:

1. Answer question ONE (Compulsory).
2. Answer any other TWO Questions.

COMPULSORY (30 MARKS)

Question ONE

(a) Define the following types of flow;
(i) Steady,
(ii) Laminar,
(iii) Uniform
(b) A trapezoidal channel with a bed width of 9 m , side slopes of 1:2 $(\mathrm{H}: \mathrm{V})$ and a water depth of 1.2 m . If the bed slope is $1: 1181$ and Chezy's $\mathrm{C}=49.5$, Calculate the discharge.
(c) A 2 m diameter pipe is laid at a slope of 0.0875 . The water depth is 750 mm and Chezy's $\mathrm{C}=65$. Calculate the discharge.
(d) Define the following terms used in non uniform flow:
(i) Critical flow
(ii) Subcritical flow
(iii) Supercritical flow
(e) The specific energy of a 3 m wide channel is 3 m . Determine the maximum discharge.

ANSWER ANY TWO QUESTIONS FROM THIS SECTION (40 MARKS)

Question TWO

(a) A trapezoidal channel for conveying water is to be designed using the following data.

- Velocity of flow $0.6 \mathrm{~m} / \mathrm{s}$.
- Side slopes of channel 1:1.5 (V:H)
- Discharge $3 \mathrm{~m}^{3} / \mathrm{s}$.
- Chezy's C $=65$

Determine:
(i) The depth of flow.
(ii) Bottom width of channel.
(iii) Slope of the channel bed.
(b) A concrete lined circular channel 3.6 m diameter that is conveying water has a bed slope of 1:600 and Chezy's $\mathrm{C}=50$. Determine:
(i) The maximum discharge
(ii) The velocity at maximum discharge
(8 Marks)

Question THREE

(a) A rectangular channel is 8 m wide and is conveying water at a rate of $15 \mathrm{~m}^{3} / \mathrm{s}$. If the depth of flow is 1.2 m , determine:
(i) Specific energy of the flowing water
(ii) Critical depth
(iii) Critical velocity
(iv) Minimum specific energy
(v) Froude number
(vi) Whether flow is subcritical or supercritical
(b) A sluice gate discharges water into a horizontal rectangular channel with a velocity of $10 \mathrm{~m} / \mathrm{s}$ and a depth of flow of 1 m . Determine:
(i) The depth of flow after the hydraulic jump.
(ii) The consequent loss in total head.
(5 Marks)
(c) Show how reynold's number is used to classify types of flow.

Question FOUR

(a) Make a labeled sketch of a pelton wheel and outline it principle of working.
(b) A centrifugal pump delivers 30litres of water per second through a 125 m long and 150 mm diameter pipe. The water is lifted through a height of 25 m , darcy's $\mathrm{f}=0.01$, and the overall efficiency of the pump is 75%. Calculate the power required to drive the pump.
(c) With the aid of a sketch describe the working principle of a reciprocating pump. (6 Marks)
(d) State TWO functions of an air vessel when placed on the delivery side of a reciprocating pump.

Question FIVE

(a) State TWO reasons that make it necessary to include 'freeboard' when designing an open channel.
(b) Define the following terms as used in open channel design:
(i) Minimum allowable velocity
(ii) Maximum allowable velocity
(c) A water channel has two sides vertical and a semicircular bottom of 2 m diameter. The depth of flow is 2 m , Chezy's $\mathrm{C}=70$ and the bed slope is $1: 1000$. Calculate the discharge through the Channel.
(d) A half full sewer, 1 m diameter is discharging $0.4 \mathrm{~m}^{3} / \mathrm{s}$ of sewage. If mannings $\mathrm{N}=0.013$, find the slope of the sewer.
(e) State TWO advantages of a centrifugal pump compared to a reciprocating pump. (2 Marks)

