THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology
DEPARTMENT OF COMPUTER SCIENCE \& INFORMATION TECHNOLOGY
DIPLOMA IN INFORMATION TECHNOLOGY (DIT 10M) YR 2 SEM I
ECS 2208: MATHEMATICS III
END OF SEMESTER EXAMINATIONS

SERIES: AUGUST/SEPTEMBER 2011
TIME: 2 HOURS

[^0]
Question 1 (Compulsory)

a) Solve

$$
\frac{2}{x+1}-\frac{1}{x-2}=-1
$$

(i)

$$
\begin{aligned}
& 2(x-2)^{2}-4=y \\
& 4 x-y=2
\end{aligned}
$$

(ii)
b) Using 4 bit representation, evaluate the following arithmetic's in two's complement notation
(i) $14-8$
(ii) $7-13$
c) Draw the symbol of a THREE input NOR operator and list all the possible outputs (4 marks)
d) Represent 13 as a BCD with the following methods Excess 3 and 2421
e) Describe how Repetition Codes can be used as an error detection scheme
f) Outline FOUR sources of errors in a transmitted signal
g) Name TWO alphanumeric coding systems in use today

SECTION B (40 MARKS) - Answer any TWO questions from this section

Question 2 (20 marks)

a) Form a system of NAND gates that can perform the operation of NOR gate
b) Draw a truth table for $\mathrm{P}^{\circ} \mathrm{T}^{\cdot}(\mathrm{P}+\mathrm{Z})$
c) Draw the logic circuit for the Boolean expression

Question 3 (20 marks)

a) Represent the binary equivalent of decimal number 237 in gray code
b) Differentiate between weighted and Non-weighted codes
c) Using the method of 4-bit two's complement evaluate the following
(i) $7-13$
(ii) $11-5$
d) Solve $713-975$ in $B C D$

Question 4 (20 marks)

a) Find the solution set for the following system of equations. Use crammer's rule

$$
\begin{aligned}
& 4 x-2 y-3 z=8 \\
& 5 x+3 y-4 z=4 \\
& 6 x-4 y-5 z=12
\end{aligned}
$$

$$
(x+y)^{7}
$$

b) Expand the expression . Using the expansion, approximate the value of 1.97^{7} to $3 \mathrm{~d} . \mathrm{p}$. (5 marks)
c) Peter and Njeri travelled from Mombasa to Nairobi through a distance of 400 km . Njeri left Mombasa half an hour earlier than Peter. Njeri arrived two hours later after Peter did. If Peter was travelling at $20 \mathrm{~km} / \mathrm{hr}$ faster than Njeri , determine the Peter's speed.

Question 5 (20 marks)

a) List any FOUR sources of errors in a transmitted signal
b) Explain the effects of errors in a transmitted signal affect communication
c) Differentiate the Parity check and Repetition code as error detection methods
d) Rewrite the signals provided below with both even and odd parity check
(i) 1010111
(2 marks)
(ii) 1001101

[^0]: Instructions to Candidates:
 Answers MUST be written clearly within the answer booklets provided with the exam paper Answer questions ONE (COMPULSORY) and any other TWO questions from section B This paper consists of THREE printed pages

