

TECHNICAL UNIVERISTY OF MOMBASA

Faculty of Engineering &

Technology

DEPARTMENT OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

DIPLOMA IN INFORMATION COMMUNICATIONTECHNOLOGY DIPLOMA IN INFORMATION TECHNOLOGY (DIT 10M/DICT 10M)

ECS 2310: QUANTITATIVE TECHNIQUE III

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: JULY 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Calculator and SMP Tables can be used

This paper consist of **FIVE** questions Answer question **ONE** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages **SECTION A (COMPULSORY)**

QUESTION ONE (30 MARKS)

- a) Explain the following components of time series
 - (i) Cyclic movement
 - (ii) Secular trend
- b) Describe the following type of index numbers:
 - (i) Laspeyres price index
 - (ii) Paasches price index
 - Prices in Ksh Commodity Standard Quantity 2009 2010 W Po Pn 5 215 210 А 12 250 В 275 С 2 110 130 D 8 950 950

c) The table below shows the quantities with their corresponding prices in 2009 and 2010

Calculate the following:

- (i) Expenditure index
- (ii) Simple aggregate price index
- d) Explain any **TWO** methods of determining the trend under time series analysis (4 marks)
- e) Describe any TWO types of correlation

SECTION B (Answer any two questions)

QUESTION TWO

Explain the **TWO** models of time series

The table below shows the details of student's enrolment in a college for three successive years. Use it to answer the questions that follow

Year	Student Enrolment							
	Term 1	Term 2	Term 3					
2008	1500	1300	1050					
2009	1600	1450	1150					
2010	1750	1650	1300					

(i) Using the moving average method, determine the trend values

(6 marks)

(4 marks)

(4 marks)

Page 2

(4 marks)

(6 marks)

(2 marks)

(ii) Using the multiplicative model, determine the seasonal variation for each term (6 marks)

Represent the above data including the trend values graphically. (4 marks) (iii)

QUESTION THREE

- Differentiate between irregular and cyclic component of a time series. a) (i)
 - Describe the following terms as applied in time series (ii)
 - (i) Deseasonalization
 - Decomposing a time series (ii)
- b) The table below shows the quarterly production of keyboards at particular electronics company.

Year	1				2				3		
Quarter	1	2	3	4	1	2	3	4	1	2	3
Output in ('000)	24	50	56	63	79	89	79	80	93	100	88

- i) Calculate the Four-quarter moving average for the production (6 marks)
- Plot the trend and time series curves for the production on the same axis(4 marks) ii)
- Evaluate the adjusted seasonal component for each quarte. Use additive time series iii) model (4 marks)

Question Four (20 marks)

- a) Define the following terms as used in correlation theory.
 - i) Correlation

- ii) Un-correlated
- iii) Perfect Correlation
- **b**) The table below shows the height and weight of a random sample of 10 patients. Use it to answer the questions that follow:

	Patient	Α	B	С	D	Ε	F	G	Н	J	K	
	Height in Inch	62	64	66	68	70	72	74	76	78	80	
	Weight in Kg	66	67	72	72	57	76	72	76	87	82	
Qu	 i) Calculate F ii) Calcualte th iii) Interpret bo 	he coeff oth the v	ficient	of deter	mination	n for the	data.	n and de	terminatic	(2	marks marks marks	s)
a)	Explain the import	ance of	regres	sion and	alysis.					(2	mark	s)
b)	State any TWO as	sumptio	ons of 1	regressi	on analy	sis.				(2	mark	s)
c)	Describe the term	bivariat	e as us	ed in re	gression					(2	marks	s)

d) The table below shows the relationship between age (in years) and price (in thousands of shillings) of a BMW motor bike sold by a company dealing with secondhand motor bikes.

(6 marks)

(6 marks)

Age	8	3	6	9	2	5	6	4	
Price	16	74	38	19	102	36	33	69	

i) Draw a scatter diagram to represent the data.ii) Determine the regression line for the data.

(4 marks) (8 marks)

(2 marks)

iii) Comment on the gradient for the data.