

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A CONSTITUENT COLLEGE OF JKUAT)

Faculty of Engineering and Technology

DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING DIPLOMA IN CHEMICAL ENGINEERING

ECH 2306 UNIT OPERATION IV

YEAR 3 SEMESTER II SPECIAL/SUPPLEMENTARY EXAMINATIONS SERIES: MARCH, 2012 TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

You should have the following for this examination

- Answer booklet
- Drawing instruments
- Drawing paper A2

This paper consists of <u>FIVE</u> questions. Question <u>ONE</u> is <u>COMPULSORY</u> Answer question <u>ONE</u> and any other <u>TWO</u> questions. Maximum marks for each part of a question are as shown. This paper consists of *THREE printed pages*.

Question One

- a. Define the following terms
 - i. Convection
 - ii. Radiation
 - iii. Fouling
 - iv. Conduction

(4 marks)

- b. Fourier equation is expressed as: $\frac{dq}{dt} = -kA(\frac{dT}{dx})$, define the symbols in the equation. (6 marks)
- c. Derive the heat transfer equation in a three layered cylindrical pipe

(10 marks)

Question Two

- a. Methane diffuses at steady state through a tube containing helium. At point 1 the partial pressure of methane is $p_{A1} = 55$ kPa and at point 2, 0.03m apart, $p_{A2} = 15$ kPa and the temperature is 298K. At this pressure and temperature, the value of diffusivity is 6.75×10^{-5} m²/s.
 - i. Calculate the flux of methane at steady state for equimolar counter-diffusion.
 - ii. Calculate the partial pressure at a point 0.02m apart from point 1

(12 marks)

b. Hydrochloric acid (A) Diffuses through a thin film of water (B) 4.0mm thick at 283K. the concentration of HCl at point one on the boundary of the film is 12 wt % (density $\rho_1=1060.7$ kg/m³)and on the other boundary, at point 2, is 4 wt% ($\rho_2=1020.15$ kg/m³). The diffusivity of HCl in water is 2.5×10^{-9} m²/s. calculate the flux of HCl considering water to be stagnant.

(8 marks)

Question Three

- a. Outline the conditions under which distribution law applies in Liquid-liquid extraction (7 marks)
- b. A hot solution containing 5000 kg of Na₂CO₃ and water with a concentration of 25wt % Na₂CO₃ is cooled to 293K, and crystals of Na₂CO₃.10H₂O are precipitated. At 293 K the solubility is 21.5 kg/100kg of total water. Calculate the yield of crystals obtained if 5% of the original water in the system evaporates on cooling. (13 marks)

Question Four

- **a.** A fluid of viscosity 0.185 Ns/m2 and density of 1676kg/m3 flows through a 35mm of diameter pipe at a rate of 456cm3/s. calculate Reynolds number of the fluid.
- b. State and explain three types of plates used in distillation column (5 mark) (15 marks)

Question Five

By what percentage would the rate of absorption be increased or decreased by increasing the total pressure from 100 to 200 kN/m^2 in the following cases?

- (a). The absorption of ammonia from a mixture of ammonia and air containing 10% of ammonia by volume, using pure water as solvent. Assume that all the resistance to mass transfer lies within the gas phase.
- (b). The same conditions as (a) but the absorbing solution exerts a partial vapour pressure of ammonia of 5 kN/m². The diffusivity can be assumed to be inversely proportional to the absolute pressure.

(20 Marks)