



# THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

### (A constituent College of JKUAT) FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING DIPLOMA IN MECHANICAL ENGINEERING (PLANT) DIPLOMA IN MECHANICAL ENGINEERING (AUTOMOTIVE)

## ECI 2231: CONTROL SYSTEM II

YEAR II SEMESTER II

SPECIAL/SUPPLEMENTARY EXAMINATION MAY 2012 SERIES TIME: 2 HOURS

#### INSTRUCTIONS TO CANDIDATES:

You should have the following for this examination:

- Answer Booklet
- Drawing Instruments

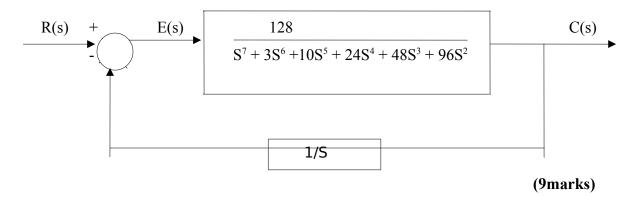
This paper consists of **FIVE** questions

Attempt ANY THREE questions. Maximum marks for each part of a question are as shown.

#### This paper consists of 3 printed Pages **Question ONE**

- a) i. Define the following terms used control system:
  - (i) Stable system
  - (ii) Unstable system
  - Marginally stable system (iii)

(3marks)


b) Determine the number of right-half plane poles in the closed loop transfer function.

$$T(S) = 10$$
  
S<sup>5</sup> + 2S<sup>4</sup> + 3S<sup>3</sup> + 6S<sup>2</sup> + 5<sup>S</sup> + 3 (8marks)

c) For the system in figure I

Determine the stability i.

ii. Determine the number of right-half-plane poles



#### **Question TWO**

For unity feedback system with the open loop function

Κ

$$G(s) = \frac{K}{S(1+0.2S)(1+0.02S)}$$

i) For K = 1 Construct bode log – magnitude and phase plots

Evaluate the gain margin and phase margin. ii)

(20marks)

#### **Ouestion THREE**

For the system

G(s) =200

- i) Produce a polar plot for W=3 to W=10.
- Determine the phase margin and gain margin ii)

#### **Question FOUR**

- a) Define the following terms Poles of a transfer function i) ii) Zens of a transfer function. (2marks) b) Given F(s) = (S+2)(S+4)-S(S+3)(S+6)Find F(s) at the point S = -7 + j9.
- c) For the closed loop transfer function
  - 0.25JK (S + 0.435) T(s) =  $S^4 + 3.46S^3 + 3.457S^2 + (0.719 + 0.25K)S + (0.0416 + 0.109K)$

Find the range of gain K1 that will cause the system to be stable. (10marks)

#### **Question FIVE**

For the system

G(s) =K(S+10)(S+20)(S+1)(S-10)

Construct the root locus and hence determine

- i) Poles
- ii) Zeros
- iii) Angle of A symptotes
- iv) Root locus on the real axis
- Break away points v)
- vi) Points where the root locus crosses imaginary axis
- vii) The value of K limiting the stability

(20marks)

(20marks)

(8marks)

(1+2S)(3+S)(5+S)