TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology
DEPARTMENT OF ELECTRICAL \& ELECTRONIC ENGINEERING

DIPLOMA IN TECHNOLOGY

INSTRUMENTATION \& CONTROL ENGINEERING (DICE 4)

ECI 2203
MEASUREMENT TECHNOLOGY II

SPECIAL/SUPPLEMENTARY EXAMINATIONS
SERIES: MARCH, 2014
TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

1. You should have the following for this examination:

- Answer Booklet
- Scientific Calculator

2. This paper consists of FIVE Questions.
3. Answer ANY THREE Questions.
4. All questions carry equal marks (20 marks).
5. Maximum marks for each part of a question are shown.

This paper consists of FOUR printed pages.
QUESTION 1
(a) (i) State the importance of standards in measurements.
(ii) Define calibration and name atleast THREE factors that influence selection of a measuring instrument.
(b) (i) What is the difference between heat and temperature.
(ii) Exemplify thermal equilibrium phenomenon.
(iii) State examples and explain the three basic ways of transferring heat.
(6 marks)
(c) (i) Distinguish between absolute temperature scales and relative temperature scales.
(ii) Give a clear analogy between the TWO types of each kind and their interrelationship.
(iii) A material has a temperature of 335 k . Find the temperature in ${ }^{\circ}$ R.

QUESTION 2

(a) (i) Explain the operational principles of gas thermometers.
(ii) A gas in a closed volume has a pressure of 100 psi at a temperature of $20^{\circ} \mathrm{C}$. What will the pressure be at $80^{\circ} \mathrm{C}$.
(iii) State the usefulness of gas thermometers and outline atleast ONE advantage and disadvantage of the transducer.
(b) Outline the effect that forms the basic operation of the liquid-in-glass thermometer and explain why this type of temperature sensor is not commonly used in processcontrol work.
(c) (i) State how it is possible to relate temperature to actual thermal energy.
(ii) A sample of oxygen gas has a temperature of $90^{\circ} \mathrm{F}$. It its molecular mass is $5.3 \times 10^{-26} \mathrm{~kg}$. Find the average thermal speed of the molecule.

QUESTION 3

(a) (i) Explain the operation process of a vapour-pressure thermometer.
(ii) Shown below is a vapour pressure curve for methychloride.

Fig. 1
Two methyl chloride vapour-pressure temperature sensors are used to measure the temperature difference between two reaction vessels. The nominal temperature is $85^{\circ} \mathrm{C}$. Find the pressure difference per degree Celsius at $85^{\circ} \mathrm{C}$ from graph Figure 1 above.
(b) (i) Original radiation pyrometers have evolved through which other two names?
(ii) State for Radiation thermometers, two advantages as they represent the practical application of the Planck law and Planck radiator. Formula (1900).
(13 marks)

QUESTION 4

(a) With aid of a schematic diagram describe the principle of operation of a pitot tube as a form of flow measuring device industrially.
(6 marks)
(b) For (a) what can you deduce from the equation $1 / 2 M V^{2}=m g h$.
(c) With aid of a sectioned diagram describe a positive displacement meter and explain its principle of operation.
(10 marks)

QUESTION 5

(a) Using a diagram, describe an electromagnetic flow meter and its system (mode) of operation and application.
(b) With aid of a diagram describe and analyse pressure formulae of an inverted U-tube differential manometer.
(c) Figure 2 below shows an inverted differential manometer connected to two pipes A and B which convey water.

Fig. 2

The fluid in manometer is oil of sp. gr. 0.8. For the manometer readings shown in the figure, find the pressure difference between A and B .

