

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

FACULTY OF ENGINEERING & TEHNOLOGY

Department of Mechanical & Automotive Engineering

Diploma in Mechanical Engineering (Plant DPL 3P) Diploma in Mechanical Engineering (Production DPR 3) Diploma in Automotive Engineering (DAE 3P)

Second III Semester I SUP Exam

2340

CONTROL & INSTRUMENTATION III

OCTOBER SERIES

Time 2 Hours

Instructions

You should have the following for this examination:

- Answer booklet
- Scientific calculator & SMP Table.
- Drawing Instruments.

This paper consists of **FIVE** Questions, answer Question **ONE** (Compulsory) and any other **TWO** Questions.

Question ONE (Compulsory)

(a) For the system in figure I, show that:

 $\frac{C(s)}{R(s)} = \frac{G(s)}{1 \pm G(s)H(s)}$

(6 Marks)

- (b) Describe the following control action giving their respective transfer functions:
 - (i) Proportional control action
 - (ii) Integral control action
 - (iii) Proportional + desirative control action
 - (iv) PID control action

(14 Marks)

Question TWO

(a) Determine the value of k and a such that the system has a damping ratio of 0.7 and an undamped natural frequency of 4 rad/sec for the system shown in figure 2.

(8 Marks)

(b) With the help of a diagram define the following terms:

- (i) Delay time
- (ii) Rise time
- (iii) Peak time
- (iv) Settling time

(12 Marks)

Question THREE

Using the data below, find the transfer function for a PID controller.

Question FOUR

For the system whose transfer function is given by:

 $\frac{C(s)}{R(s)} = \frac{25}{3S^2 + 5S + 25}$

Determine: (i) Natural frequency

(3 Marks)

- (iii) Damped frequency
- (iv) Time constant

Sketch the graphs for the following test signals.

- (i) Step
- (ii) Ramp
- (iii) Impulse
- (iv) Parabolic

Question FIVE

A stired tank blending systems initially is full of water and is being fed pure water at a constant flow rate, q. at a particular time an operator adds caustic solution at the same volumentric flow rate q but with concentration C_i . If the liquid volume V is constant, the dynamic model for this process is:

$$V\frac{dc}{dt} + qc = qc_i$$

With	C(o) C _i C	= = =	O Inlet concentration tank outlet concentration	
Data	=	V= 2m ³ , q = $0.4m^3$ /min, C _i = $50kg/m^3$		
(a) Derive the transfer function between C and C _i (14 Marks) $ au$				
(b) Find the time constant $ m and$ the gain k of the transfer function. (4 Marks) au				
(c) What are the units for k & Marks)				

(2

(3 Marks) (3 Marks) (3 Marks)

(8 Marks)