THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE FACULTY OF ENGINEERING

DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING

DIPLOMA IN CHEMICAL ENGINEERING

ECH 2307: REACTOR ENGINEERING II

YEAR III SEMESTER II SUPPLEMENTARY EXAMINATION

SERIES: MARCH 2012

TIME: 2 HOURS

INSTRUCTIONS:

You should have the following for this examination:

- Non-programmable Scientific calculator
- Answer booklet
- Writing material (Pen, Pencil, Rubber and Ruler) Only!

This paper consists of TWO sections; A and B.

Answer ALL questions in section A and any TWO questions in section B.

Section A carries 30 marks while section B carries 40 marks.

Each question in section **B** carries **20 marks**.

Maximum marks for each question / part of question are as indicated.

SECTION A

- 1. (a) Explain what is meant by an elementary reaction.
 - (b) <u>Define</u> molecularity and in relation to it, explain why the following reaction is not elementary. [4 marks]

$$N_2 + 3 H_2 \rightarrow 2 NH_3$$

2. (a) <u>Define</u> a chain reaction.

(b) The following mechanism has been proposed for a photochemical reaction of hydrocarbon A.

```
A \rightarrow CH_3 + RR \rightarrow D + HH + A \rightarrow H_2 + FF + F \rightarrow F_2F \rightarrow H + M
```

<u>Identify</u> the initiation, propagation and termination step(s). [4 marks]

- 3. (a) Explain what is meant by half life of a chemical reaction. [1 marks]
 - (b) In the Arrhenius law, the change of the reaction rate constant *k*, with temperature *T*, is Given by;
 - k ln i i d i i

Where; k is reaction rate constant

T is temperature

4. (a) Define the term catalysis.

R is universal gas constant

 E_a is activation energy

<u>Derive</u> an expression of k for a change in temperature from T_1 to T_2 . [4 marks]

- (b) <u>Distinguish</u> between homogeneous and heterogeneous catalysis. [2 marks]
- (c) <u>Explain</u> how a catalyst affects the rate of a chemical reaction. [2 marks]

. ,

[1 mark]

[1 mark]

[1 mark]

SECTION B

5. Pure gaseous reactant A ($C_{A0} = 100$ millimol/litre) is fed at steady rate into a mixed reactor (CSTR), (V = 0.1 litre) where it dimerizes (2A \rightarrow R). For different gas feed rates the following data are obtained:

Run number	1	2	3	4
v ₀ , litre/hr	30.0	9.0	3.6	1.5
C _{A, out} , millimol/litre	85.7	66.7	50	33.3

Find a rate equation for this reaction.

[20 marks]

- 6. (a) The rate equation for a chemical reaction; $A \rightarrow$ products, is always expressed as; $-r_A = kC_A^n$
 - (i) <u>Define *n* and briefly explain how it affects the rate of a chemical reaction. [4 marks]</u>
 - (ii) With respect to the above expression of the rate equation, <u>state</u> **two** factors that affect the rate of a chemical reaction. [2 marks]
 - (b) The following data were obtained for the reaction A + B → R + S from investigations carried out in a batch reactor at 298 °K.

$[A]_0, (mole \cdot L^{-1})$	0.100	0.150	0.100
$[B]_{0}$, (mole·L ⁻¹)	0.100	0.100	0.200
Rate, (mole· L^{-1} ·sec ⁻¹)	2.73	6.14	2.71

Determine:

(i) the order of the reaction.	[12 marks]
(ii) the true rate constant.	[2 marks]

- 7. (a) After 8 minutes in a batch reactor, reactant ($C_{A0} = 1 \text{ mol/ltr}$) is 80% converted; after 18 minutes, conversion is 90%. Find a rate equation to represent this reaction. [8 marks]
 - (b) Consider the following experimental data in the table below obtained from a first order decomposition of organic substance *A*;

n · products		
Time (t) in minutes	Concentration of A in mol/dm ³	
0.0	0.50	
3.0	0.41	
6.0	0.34	
9.0	0.28	
12.0	0.23	
15.0	0.19	
18.0	0.15	

 $A \rightarrow products$

Using the integral method, determine the specific reaction rate constant, k, if the

analysis was carried out in a constant volume batch reactor.

[12 marks]

C March/2012