

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A CONSTITUENT COLLEGE OF JKUAT)

Faculty of Engineering and Technology

DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING

DIPLOMA IN CHEMICAL ENGINEERING

ECH 2305: INDUSTRIAL CHEMICAL PROCESSES III

YEAR III SEMESTER I SUPPLEMENTARY EXAMINATION

SERIES: MARCH 2012

TIME: 2 HOURS

INSTRUCTIONS:

You should have the following for this examination:

- Non-programmable Scientific calculator
- Answer booklet
- Writing material (Pen, Pencil, Rubber and Ruler) Only!

This paper consists of TWO sections; **A** and **B**. Answer **ALL** questions in section **A** and any **TWO** questions in section **B**. Section **A** carries **20 marks** while section **B** carries **40 marks**. Each question in section **A** carries **5 marks** while in section **B** carries **20 marks**. Maximum marks for each question / part of question are as indicated. This paper consists of **THREE** Printed pages.

SECTION A

1. (a) <u>Define</u> cement setting.	[2 marks]
(b) <u>State</u> the three types of cement setting.	[3 marks]
2. (a) <u>Define</u> glass.	[2 marks]
(b) Differentiate the two types of furnaces used in glass making.	[3 marks]
3. (a) <u>Name</u> the three basic raw materials used in ceramic industries.	[3 marks]
(b) State two properties (physical/chemical) related to refractories.	[2 marks]
4. (a) <u>Define</u> environmental pollution in relation to chemical processing industries.	[2 marks]
(b) Name three sources of CO ₂ associated with Portland cement manufacture.	[3 marks]

SECTION B

5. (a) Name four cement clinker bogue compounds responsible for cement properties.

[2 marks]

- (b) <u>Describe</u> cement manufacture by the wet process. [4 marks]
- (c) The following materials and equipment are to be used in the manufacture of cement.
 Raw materials: Gypsum, limestone, clay
 Equipment: Rotary kiln, cement mill, raw mixture mill, clinker silo, raw mixture silo.
 <u>Draw</u> a block flow diagram to represent the cement manufacturing process. [7 marks]
- (d) <u>Proportionate</u> to 92% lime saturation factor shale and limestone with the following percentage composition;

	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO
Shale	50.6	24.12	0.81	4.32
Limestone	3.10	0.7	0.42	60.12

$$L.S.F. = \frac{\%CaO - 0.7 SO_3}{2.8 SiO_2 + 1.2 Al_2O_3 + 0.65 Fe_2O_3}$$

[7 marks]

- 6. (a) With the aid of diagrams, <u>differentiate</u> a food chain from a food web. [4 marks]
 - (b) Briefly explain the following terms giving suitable examples where applicable.
 - (i) Point source pollution.[3 marks](ii) Non-point source pollution.[3 marks](c) Explain the effects of the following cycles on the environment;[6 marks](i) hydrological,[7 marks]
 - (ii) nitrogen,

(iii) oxygen.

(d) <u>Define</u> eutrophication and state any **two** of its effects. [4 marks]

7. (a) Explain the main chemical composition difference between soda-lime glass and lead glass. [2 marks]
(b) State three properties of glass that make it conducive for its applications. [3 marks]
(c) A sample glass composition is SiO₂ (silica) 71%, CaO (lime) 8.5%, Al₂O₃ (alumina) 1.5%, Na₂O (sodium) 15.5%, MgO (magnesia) 3.5%. The raw materials for glass manufacture has the composition as shown in the table below.

Material	SiO ₂	Na ₂ O	CaO	MgO	Al ₂ O ₃	Fe ₂ O ₃	Fusion loss
Silica (sand)	98.54	—	0.58	_	0.64	0.13	0.11
Soda	_	57.2	-	_	_	_	42.8
Lime	1.47	—	53.9	_	_	0.6	44.2
Dolomite	3.2	_	27.06	19.62	2.57	0.53	47.02
Technical Alumina	0.4	_	0.35	_	97.9	0.05	1.30

Given that fusion loss is the loss of material during the melting process, determine the respective quantities of the raw materials in a batch of a mixture required to produce 100 kg of the sample glass whose composition is stated above. [15 marks]