

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A CONSTITUENT COLLEGE OF JKUAT)

Faculty of Engineering and Technology

DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING DIPLOMA IN CHEMICAL ENGINEERING

ECH 2302 REACTOR ENGINEERING I

YEAR III SEMESTER I SUPPLEMENTARY EXAMINATION

SERIES: MARCH 2012

TIME: 2 HOURS

INSTRUCTIONS:

You should have the following for this examination:

- Non-programmable Scientific calculator
- Answer booklet
- Writing material (Pen, Pencil, Rubber and Ruler) Only!

This paper consists of TWO sections; **A** and **B**. Answer **ALL** questions in section **A** and any **TWO** questions in section **B**. Section **A** carries **20 marks** while section **B** carries **40 marks**. Each question in section **B** carries **20 marks**. Maximum marks for each question / part of question are as indicated.

SECTION A [20 MARKS]

Answer <u>ALL</u> questions in this section.

- 1. (a) Explain what is meant by an elementary reaction. Use an example. [2 marks]
 - (b) The reaction between hydrogen and bromine to produce hydrogen bromide;

$$\mathrm{H_2} + \mathrm{Br_2} \to 2 \; \mathrm{HBr}$$

proceeds through the elementary reaction steps

$$H\bullet + Br_2 \rightarrow HBr$$
$$Br_2 \leftrightarrow 2Br\bullet$$

$$Br\bullet + H_2 \leftrightarrow HBr + H\bullet$$

<u>Identify</u> the initiation, propagation and termination steps. [3 marks]

(c) <u>Define</u> molecularity and in relation to it, explain why the following reaction is not elementary.[2 marks]

$$N_2 + 3 H_2 \rightarrow 2 NH_3$$

2. (a) For a gas reaction at 400 °K the rate is reported as

$$\frac{-d p_A}{dt} = 3.66 p_A^2, atm/hr$$

What are the units of the rate constant?

- (b) The rate of a reaction is usually expressed as the change of a reactant or product concentration over time. However, as shown in (a) above, the change in pressure can also be used when dealing with gaseous systems. <u>Explain</u> how concentration and pressure are interchangeably related by deriving the appropriate expression. [3 marks]
- 3. (a) Explain what is meant by half life of a chemical reaction. [2 marks]
 - (b) In the Arrhenius law, the change of the reaction rate constant *k*, with temperature *T*, is Given by;

```
k
ln i
i
d i
d i
k
Where; k is reaction rate constant
T is temperature
R is universal gas constant
```

[2 marks]

 E_a is activation energy

<u>Derive</u> an expression of k for a change in temperature from T_1 to T_2 . [3 marks]

(c) Give three characteristics of catalysts that make them conducive for their purpose.

[3 marks]

[18 marks]

[2 marks]

SECTION B [40 MARKS]

Answer any <u>TWO</u> questions in this section.

4. The table below shows the experimental results of the following reaction;

$A \rightarrow products$				
Time, min	0.010	0.005	0.002	0.001
[A], mol/m^3	0.0	0.2	0.4	0.6

Using the graphical method, find the following:

(a) the order of this reaction with respect to A.

(b) the rate constant.

5. (a) The rate equation for a chemical reaction; $A \rightarrow$ products, is always expressed as;

 $-r_A = kC_A^n$

- (i) <u>Define</u> *n* and briefly explain how it affects the rate of a chemical reaction. [4 marks]
- (ii) With respect to the above expression of the rate equation, <u>state</u> **two** factors that affect the rate of a chemical reaction. [2 marks]
- (b) The following data were obtained for the reaction A + B → R + S from investigations carried out in a batch reactor at 298 °K.

$[A]_0$, (mole·L ⁻¹)	0.100	0.150	0.100
$[B]_{0}$, (mole·L ⁻¹)	0.100	0.100	0.200
Rate, (mole· L^{-1} ·sec ⁻¹)	2.73	6.14	2.71

Determine:

(i) the order of the reaction.	[12 marks]
(ii) the true rate constant.	[2 marks]

- 6. (a) After 8 minutes in a batch reactor, reactant ($C_{A0} = 1 \text{ mol/ltr}$) is 80% converted; after 18 minutes, conversion is 90%. Find a rate equation to represent this reaction. [6 marks]
 - (b) Consider the following experimental data in the table below obtained from a first order decomposition of organic substance *A*;

$A \rightarrow products$			
Time (t) in minutes	Concentration of A in mol/dm ³		
0.0	0.50		
3.0	0.41		
6.0	0.34		
9.0	0.28		
12.0	0.23		
15.0	0.19		

18.0	0.15

Using the integral method, <u>determine</u> the specific reaction rate constant, *k*, if the analysis was carried out in a constant volume batch reactor. [14 marks]