THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
 (A Constituent College of JKUAT)

(A Centre of Excellence)
Faculty of Engineering \&
Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN CIVIL ENGINEERING

ECE 2203: FLUID MECHANICS I
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: OCTOBER 2012
TIME: 2 HOURS

Instructions to Candidates:
You should have the following for this examination

- Answer Booklet
- Mathematical Table/Pocket Calculator

This paper consists of FIVE questions.

Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One (20 marks)
a) State and explain FOUR properties of fluids
b) Give TWO differences between liquids and gases
c) State giving units and dimensions the SIX primary units of the SI systems
d) Find the head ' h ' of water corresponding to an intensity of pressure ' p ' of $340,000 \mathrm{~N} / \mathrm{m}^{2}$. The mass density ' p ' of water is $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
e) A mercury ' U ' tube manometer is used to measure the pressure above atmospheric of water in a pipe, the water being in contact with the mercury in the left hand limb. If the mercury is 30 cm below A in the left land limb and 20 cm above A in the right hand limb, what is the gauge pressure at A?

Specific gravity of mercury, $\mathrm{s}=13.6$ (see figure 1 below)
(8 marks)
Figure 1

Question Two (20 marks)

a) State TWO advantages and FOUR disadvantages of manometers.
(6 marks)
b) A cylindrical buoy 1.35 m in diameter and 1.8 m high has a mass of 770 kg . Show that it will not float with its axis vertical in sea water of density $1025 \mathrm{~kg} / \mathrm{m}^{3}$. If one end of the vertical chain is fastened to the base. Find the pull required just to keep the buoy vertical. The centre of gravity of the buoy is 0.9 m from its base.
(14 marks)

Question Three (20 marks)

a) Show that for a submerged vertical surface, the resultant force R is given by $1 / 2 \mathrm{PgH}^{2}$ (6 marks)
b) A vessel containing a liquid of mass density $930 \mathrm{~kg} / \mathrm{m}^{3}$ is given a constant vertical acceleration $\mathrm{f}=$ $4.8 \mathrm{~m} / \mathrm{s}$ in a upward direction. If the vessel is 1.2 m wide and 1.5 m in breadth and the depth of the liquid is 0.9 m . Calculate the force on the bottom of the vessel.
i) While it is being accelerated

(8 marks)

ii) When the acceleration ceases and the vessel continues to move at a constant velocity of $6 \mathrm{~m} / \mathrm{s}$ vertically upward.

Question Four (20 marks)

a) A cylindrical tank is span at $300 \mathrm{rev} / \mathrm{min}$ with its axis vertical - The tank is 0.6 m high and 45 cm diameter and is filled completely with water before spinning. Show that the water surface will take the form of paraboloid when the container is span.
(10 marks)
b) Also calculate:
i) The speed at which the water surface just touch the top rim and centre bottom of the tank.
(5 marks)
ii) The level to which the water will return when the tank steps spinning and the amount of water lost.

Question Five (20 marks)

a) Derive the Bernoulli's equation
(10 marks)
b) A jet of water is discharged through a nozzle with an effective diameter' d ' of 75 mm and a velocity ' V ' of $22.5 \mathrm{~m} / \mathrm{s}$. Calculate the power of the issuing jet. If the nozzle is supplied from a reservoir which is 30 m above it, what is the loss of head in the pipe line and nozzle and the efficiency of power transmission.

