

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

HIGHER DIPLOMA IN CONSTRUCTION DIPLOMA IN CIVIL ENGINEERING DIPLOMA IN ARCHITECHTURE

EBC 2303 : REINFORCED CONCRETE DESIGN

SPECIAL/SUPPLEMENTARY EXAMINATIONS

SERIES: MAY, 2011

TIME: 2 HOURS

Instructions to Candidates:

This paper consists of **FIVE** questions. Answer Question **ONE** (Compulsory) and any other **TWO** Questions.

COMPULSORY (30 MARKS)

Question ONE

- (a) Outline the process of structural design.
- (b) The floor of a classroom block 6.0m by 15.0m is supported on **FIVE** reinforced concrete beams equally spaced at 3.0m centres and monolithically casted together. The beams are in turn supported on reinforced concrete columns. Design the slab given the following information:
 - Imposed load on floor = 2.5kn/m² on floor.
 - 20m thick screed in upper side of slab.
 - 15m thick sacred in the lower-side of slab.
 - Pvc floor tiles of weight = 0.35kg/m^3
 - Density of screed = $18KN/m^3$
 - Density of concrete = 24KN/m³

(30 Marks)

ANSWER ANY TWO QUESTIONS FROM THIS SECTION (20 MARKS)

Ouestion TWO

Design typical T-beam in question 1(b), including shear reinforcement.

(20 Marks)

Ouestion THREE

A short square reinforced concrete column is required to transmit an axial load of 500kn to a square base. Design the base for bending and check for local bond and shear. (11 Marks)

Question FOUR

Design the T-beam B/1-2 shown in figure 1.

(11 Marks)

Data

Live load on floor = 3.0KN/m^2 Finishes = 1.0KN/m^2 Slab thickness = 150 mm

Support moments = $-WI^2/12$ Span moments = $+WI^2/24$

Question FIVE

Figure 2 shows a section through a pre-cast concrete floor. Design an internal beam given the following information.

- Density of concrete is 24KN/m³