

TECHICAL UNIVERSITY OF MOMBASA Faculty of Engineering &

Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

HIGHER DIPLOMA IN CIVIL ENGINEERING

EBC 3203: REINFORCED CONCRETE & MANSONRY DESIGN

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: FEBRUARY 2013 TIME: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet This paper consists of FIVE questions. Answer any THREE questions

© 2013 – Technical University of Mombasa

Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (20 marks)

- a) Outline the process of structured design.
- (5 marks) b) The floor of a classroom block 6.5m x 15.0m consists of FIVE reinforced concrete beams equally spaced at 3.0m centres and monolithically casted together with the slab. The beams one in turn supported on reinforced concrete columns.

Design typical T-beam

Data:

Imposed load on floor	=	2.5KN/m ²
Finishes on floor	=	$0.7 KN/m^2$

Question Two (20 marks)

a) I	Define	design	loads
------	--------	--------	-------

b) Design L-Beam in question 1(b)

Question Three (20 marks)

- a) Define design loads
- **b)** Figure 1 shows a plan of an office block.
 - Design Panel 'X' of the slab
 - Sketch a section through the shorter span to show the arrangement of reinforcement. (15 marks)

(20 marks)

(20 marks)

(5 marks)

Data

-	Imposed load on floor	=	3.0KN/m ²
-	15mm thick screed on upper side of s	slab	
-	20mm thick screed on lower side of s	slab	
-	PVC floor tiles of weight	=	$0.2KN/m^2$
-	Density of concrete	=	24KN/m ³
-	Density of screed	=	18 KN $/m^3$
-	Permissible local bond stress	=	1.25N/mm ²
-	Pst	=	210N/mm ²

Question Four (20 marks)

a) State factors governing structural design.

b) The floor of a hall of clear spars 3.0m by 7.5m is supported on 200mm thick block walls on all its four sides.

Design the slab and sketch a section through the shorter span to show the arrangement of reinforcement. (15 marks)

Data:

-	Pst	=	$210N/mm^2$
-	Finishes on slab	=	$0.7N/mm^2$
-	Imposed Load on floor	=	$3.0 KN/m^2$

Question Five (20 marks)

a) State factors governing structural design.

(5 marks)

(5 marks)

- **b)** A reinforced concrete column of actual length of 4.0m is required to carry an axial load of 400KN. The column is fully fixed at both ends.
 - i) Design the column
 - ii) Design the column base for bending.

(15 marks)

Data:

- Pcc = 5.3N/mm²
- Psc = 175N/mm²
- Pst = 210N/mm²
- Pcb = $7N/mm^2$
- Bearing capacity of soil = 200KN/m²