

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT) Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

DIPLOMA IN CIVIL ENGINEERING

DIPLOMA IN BUILDING & CIVIL ENGINEERING

EBC 2303: ENGINEERING SURVEYING II

END OF SEMESTER EXAMINATION

SERIES: APRIL 2012

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator

This paper consists of FIVE questions

Answer any **THREE** questions. Maximum marks for each part of a question are clearly shown This paper consists of **FOUR** printed pages

Question 1 (20 marks)

a)	(i) Define the term tacheometry.	(1 mark)
	(ii) State the TWO basic quantities from which horizontal distance is derived in tache	5
	(iii) Differentiate between stadia and tangential systems of tacheometry	$(1\frac{1}{2} \text{ marks})$ (2 marks)

- b) Table 1 shows the information of stadia tachometric exercise with the staff held vertically. Given the reduced level of the bench mark as 270.00m. Calculate:
 - (i) Distance PQ, PR and QR
 - (ii) The difference in height PQ
 - (iii) Area PQR in hectares

Table 1

Inst	То	Staff Readings (m)			Vertical	Height of	Whole
		Upper	Mid	Lower	angle	Inst (m)	circle
							bearing
Р	Q	2.750	2.160	1.570	2° 45'	1.47	60° 30'
	R	3.050	2.153	1.255	-1° 30'	1.47	140° 20'
	Bench	1.580	1.015	0.450	2° 00'	1.47	
	Mark						

 $(15\frac{1}{2} \text{ marks})$

Question 2 (20 marks)

- a) Given the o-ordinates of points R and S as:
 - R: 125.45m E, 234.67m N
 - S: 376.19E, 242.87m N

Calculate the length and bearing of line RS using a join computation table (5 marks)

- b) Figure 1 shows the whole circle bearings of a polygonal traverse A, B, C, D, E, A. Calculate the internal angles A, B, C and D of the traverse.
- c) The data shown in table 2 is for a closed loop traverse A, B, C, A. Given the whole circle bearing of line AB as 128° 22' 20". Calculate:
 - (i) The corrected internal angles
 - (ii) The whole circle bearing of the lines
 - (iii) The partial co-ordinates of the lines

figure 1

Table 2

Line	Uncorrected Angle	Length (m)
AB	57° 33'36''	322.43
BC	92°07'20''	539.22
СА	30° 18' 26''	638.47

Question 3 (20 marks)

- a) (i) Define the following terms as used in compass traversing
 - Magnetic merdian
 - Angle of declination
 - Agonic line
 - (ii) State **TWO** merits and **ONE** demerit of a compass traverse as compared to other methods of Surveying. (3 marks)
 - (iii) State any **TWO** uses of a compass traverse
- b) The bearings of a compass traverse P, Q, R, S, T, R are shown in table 3. Adjust the traverse for local attraction (12 marks)

Table 3

Line	Length (m)	Forward bearing (FB)	Back bearing (BB)
QP	210.86	207° 45'	
PQ			29° 00'
PT	14.59	135° 00'	
ТР			315° 00'
TS	161.62	62° 00'	
ST			242° 25'
SR	152.73	12° 00'	
RS			192° 25'
RQ	202.23	292° 00'	

(3 marks)

(2 marks)

(QR		112° 25'
Question 4 (2	20 mark	ks)	

With the aid of sketche(s) where necessary, explain the following theodolite operations:

a) Repetition method of measuring anglesb) Measurement of vertical anglesc) Trunnion axis adjustment	(6 marks) (7 marks) (7 marks)
Question 5 (20 marks)	
a) Differentiate between temporary and permanent adjustments of a theodolite	(2 marks)
 b) State the function of the following parts of a theodolite (i) Centering clump (ii) Optical plummet (iii) Vernier (iv) Slow motion screws 	(4 marks)
c) Describe the zero index error adjustments of a theodolite	(8 marks)

d) Table 4 shows horizontal circle readings about a point. Reduce the angles using an angular booking table and illustrate the configuration of the station on a sketch.

Table 4

(6 marks)

Inst at	To point	Face right			Face left			
		0	د	دد	0	٢	"	
Α	В	21	41	30	201	4	35	
						1		
	C	90	30	55	270	3	50	
						0		
	D	177	29	05	357	2	10	
						9		
	E	208	18	50	28	1	45	
						8		
	F	265	17	10	85	1	08	
						7		
	G	381	41	30	201	4	35	
						1		