THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
DIPLOMA IN CIVIL ENGINEERING
DIPLOMA IN BUILDING \& CIVIL ENGINEERING
EBC 2303: ENGINEERING SURVEYING II
END OF SEMESTER EXAMINATION
SERIES: APRIL 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator

This paper consists of FIVE questions
Answer any THREE questions. Maximum marks for each part of a question are clearly shown This paper consists of FOUR printed pages

Question 1 (20 marks)

a) (i) Define the term tacheometry.
(ii) State the TWO basic quantities from which horizontal distance is derived in tacheometry
(iii) Differentiate between stadia and tangential systems of tacheometry
b) Table 1 shows the information of stadia tachometric exercise with the staff held vertically. Given the reduced level of the bench mark as 270.00 m . Calculate:
(i) Distance PQ, PR and QR
(ii) The difference in height PQ
(iii) Area PQR in hectares

Table 1

Inst	To	Staff Readings (m)			Vertical angle	Height of Inst (m)	Whole circle bearing
	Upper	Mid	Lower				
P	Q	2.750	2.160	1.570	$2^{\circ} 45^{\prime}$	1.47	$60^{\circ} 30^{\prime}$
	R	3.050	2.153	1.255	$--^{\circ} 30^{\prime}$	1.47	$140^{\circ} 20^{\prime}$
	Bench Mark	1.580	1.015	0.450	$2^{\circ} 00^{\prime}$	1.47	

Question 2 (20 marks)

a) Given the o-ordinates of points R and S as:

- R: 125.45 m E, -234.67 m N
- $\mathrm{S}: 376.19 \mathrm{E}, 242.87 \mathrm{~m} \mathrm{~N}$

Calculate the length and bearing of line RS using a join computation table
b) Figure 1 shows the whole circle bearings of a polygonal traverse $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{A}$. Calculate the internal angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D of the traverse.
c) The data shown in table 2 is for a closed loop traverse A, B, C, A. Given the whole circle bearing of line AB as $128^{\circ} 22^{\prime} 20^{\prime}$. Calculate:
(i) The corrected internal angles
(ii) The whole circle bearing of the lines
(iii) The partial co-ordinates of the lines

figure 1

Table 2

Line	Uncorrected Angle	Length (m)
AB	$57^{\circ} 33^{\prime} 36^{\prime \prime}$	322.43
BC	$92^{\circ} 07^{\prime} 20^{\prime \prime}$	539.22
CA	$30^{\circ} 18^{\prime} 26^{\prime \prime}$	638.47

Question 3 (20 marks)

a) (i) Define the following terms as used in compass traversing

- Magnetic merdian
- Angle of declination
- Agonic line
(ii) State TWO merits and ONE demerit of a compass traverse as compared to other methods of Surveying.
(iii) State any TWO uses of a compass traverse
b) The bearings of a compass traverse $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{R}$ are shown in table 3. Adjust the traverse for local attraction
(12 marks)
Table 3

Line	Length (m)	Forward bearing (FB)	Back bearing (BB)
QP	210.86	$207^{\circ} 45^{\prime}$	
PQ			$29^{\circ} 00^{\prime}$
PT	14.59	$135^{\circ} 00^{\prime}$	
TP			$315^{\circ} 00^{\prime}$
TS	161.62	$62^{\circ} 00^{\prime}$	
ST			$242^{\circ} 25^{\prime}$
SR	152.73	$12^{\circ} 00^{\prime}$	
RS			$192^{\circ} 25^{\prime}$
RQ	202.23	$292^{\circ} 00^{\prime}$	

Question 4 (20 marks)

With the aid of sketche(s) where necessary, explain the following theodolite operations:
a) Repetition method of measuring angles
(6 marks)
b) Measurement of vertical angles
(7 marks)
c) Trunnion axis adjustment

Question 5 (20 marks)

a) Differentiate between temporary and permanent adjustments of a theodolite
b) State the function of the following parts of a theodolite
(i) Centering clump
(ii) Optical plummet
(iii) Vernier
(iv) Slow motion screws
c) Describe the zero index error adjustments of a theodolite
d) Table 4 shows horizontal circle readings about a point. Reduce the angles using an angular booking table and illustrate the configuration of the station on a sketch.
Table 4

Inst at	To point	Face right			Face left		
		-	،	"	-	'	"
A	B	21	41	30	201	$\begin{aligned} & 4 \\ & 1 \end{aligned}$	35
	C	90	30	55	270	$\begin{aligned} & \hline 3 \\ & 0 \\ & \hline \end{aligned}$	50
	D	177	29	05	357	$\begin{aligned} & 2 \\ & 9 \end{aligned}$	10
	E	208	18	50	28	$\begin{aligned} & 1 \\ & 8 \end{aligned}$	45
	F	265	17	10	85	$\begin{aligned} & 1 \\ & 7 \end{aligned}$	08
	G	381	41	30	201	4 1	35

