THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

UNIVERSITY EXAMINATION FOR DEGREE IN BACHELOR OF SCIENCE IN CIVIL ENGINEERING

ECE 2211: ENGINEERING SURVEYING II
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2011
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) from SECTION A and any other TWO questions from SECTION B
Maximum marks for each part of a question are clearly shown
This paper consists of FIVE printed pages

SECTION A (COMPULSORY)

Question 1 (20 marks)

a) The coordinates of S , A and L were given as $\mathrm{N}_{\mathrm{S}}=1200.55 \mathrm{~m}, \mathrm{E}_{\mathrm{S}}=1310.22 \mathrm{~m} ; \mathrm{N}_{\mathrm{A}}=960 \mathrm{~m}, \mathrm{E}_{\mathrm{A}}=$ $1530.45 \mathrm{~m}, \mathrm{~N}_{\mathrm{L}}=580.82 \mathrm{~m}, \mathrm{E}_{\mathrm{L}}=1240.22 \mathrm{~m}$ respectively. Compute the coordinates of B which are
located by the intersection from stations S, A and L by observing the following angles: BSA

$$
\begin{align*}
& \propto \quad 85^{\circ} 40^{\prime} 50^{\prime}, \operatorname{SAB}\left({ }^{\delta}\right)=55^{\circ} 45^{\prime} 54^{\prime}, \text {, BAL }\left(^{\lambda}\right)=41^{\circ} 42^{\prime} 50^{\prime \prime} \text { and ALB }\left(^{\beta}\right)=70^{\circ} 10^{\prime} 33
\end{align*}
$$

marks)
b) A traverse was run between Pussy and Puppy to fix new points $\mathrm{N}_{6}, \mathrm{~N}_{7}, \mathrm{~N}_{8}, \mathrm{~N}_{9}, \mathrm{~N}_{10}$ and N_{11}. The bearings were provided. Given the following information, compute the final corrected coordinates for the new points. The data was as follows:

Pussy : +26594.36; +686431.52
Puppy: +28162.86: +685828.56
Other details included:
Pussy to N_{6}
$251^{\circ} 44^{\prime} 01^{\prime \prime}$ 'and 340.55 m
N_{6} to N_{7}
$254^{\circ} 03^{\prime} 22^{\prime \prime}$ and 272.321 m
N_{7} to N_{8}
$43^{\circ} 08^{\prime} 09^{\prime \prime}$ and 480.508 m
N_{8} to N_{9}
$05^{\circ} 20^{\prime} 53^{\prime \prime}$ and 206.399 m
N_{9} to N_{10}
$326^{\circ} 19^{\prime} 50^{\prime \prime}$ and 364.981 m
N_{10} to N_{11}
$338^{\circ} 06^{\prime} 50^{\prime \prime}$ and 335.418 m
N_{11} to Puppy
298 ${ }^{\circ} 32^{\prime} 40^{\prime \prime}$ ' and 443.924 m
c) With an aid of a sketch, show that when $\quad \alpha \quad \beta \quad$ and \quad are angles depression horizontal distance H is given by the equation below:

$$
H=\frac{S}{\tan \alpha+\tan \beta} \quad \text { where } \mathrm{S}=\text { staff intercept }
$$

SECTION B (Answer any TWO questions from this section)

Question 2 (20 marks)

a) Define teacheometry. A theodilite whose height of the instrument level is 1.85 m has a multiplying constant of 100 and additive constant of 1.0 . If the angle of elevation is 8° and the upper, middle and lower stadia readings are $4.99 \mathrm{~m}, 3.5 \mathrm{~m}$ and 2.1 m respectively. What is the distance of the staff from the station and what would be the reduced level at the staff? (4 marks)
b) Define triangulation. The filed abstract from a triangulation scheme established for a small construction site shown in figure 1 had the following dat. By employing equal shift method, adjust the angles.

Angle	Observed value
1	$26^{\circ} 10^{\prime} 48^{\prime \prime}$
2	$27^{\circ} 37^{\prime} 16^{\prime \prime}$
3	$35^{\circ} 46^{\prime} 10^{\prime \prime}$
4	$32^{\circ} 57^{\prime} 52^{\prime \prime}$
5	$28^{\circ} 23^{\prime} 17^{\prime \prime}$
6	$29^{\circ} 04^{\prime} 37^{\prime \prime}$
7	$126^{\circ} 11^{\prime} 59^{\prime \prime}$
8	$111^{\circ} 15^{\prime} 52^{\prime \prime}$
9	$122^{\circ} 32^{\prime} 02^{\prime \prime}$

Fig I

Question 3 (20 marks)

a) Using sketches, differentiate between FACE LEFT and FACE RIGHT
b) Discuss the TWO main methods of error distribution in traversing citing the assumptions made by each method
c) Make short notes on the following
(i) Primary triangulation
(ii) Secondary triangulation
d) An open traverse was run from A to E, given using the sketch and the information provided, computer the partial coordinates of each line

Question 4 (20 marks)

The figure below (fig 3) shows observed angles of braced quadrilateral PQRS. Given the observed values below, adjust the values of ALL the angles of this quadrilateral

Angle	Observed value
1	30'20'50''
2	$54^{\circ} 10^{\prime} 45$ '
3	$55^{\circ} 44$ '38'
4	3943'39'
5	4153'49'"
6	42 ${ }^{\circ} 7^{\prime} 47^{\prime \prime}$
7	54*54'56''
8	40'33'30'

Question 5 (20 marks)

a) Given the following coordinates of M and N , compare the table by using BODWITCH METHOD

Std	Bearing	Dist.	Calculated		Adjustments		adjusted		Final Coordinates	
			ΔE	ΔN	δE	δN	ΔE	ΔN	E	
N										

The coordinates are provided as follows:

Coordinates	Northings (M)	Eastings (M)
M	+502.39	209.42
N	+959.29	+129.63

b) The adjusted angles of a triangle ABC are as given below:

$$
\beta_{A}=74^{\circ} 04^{\prime} 25^{\prime \prime}
$$

$$
\beta_{B}=43^{\circ} 35^{\prime} 49^{\prime \prime}
$$

$$
\beta_{C}=62^{\circ} 19^{\prime} 49^{\prime \prime}
$$

Given the datum coordinates of A and B as follows, compute the provisional coordinates C

	$\mathbf{N}(\mathbf{M})$	$\mathbf{E (M)}$
A	+643649.19	+409577.46
B	+641668.40	+412600.36

(10 marks)

