THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE ((A Constituent College of JKUAT)
 (A Centre of Excellence)
 Faculty of Engineering \& Technology in Conjunction with Kenya Institute of Highways and Building \& Technology (KIHBT)

EBE 3117: HYDRAULICS
END OF SEMESTER EXAMINATION
SERIES: AUGUST 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination
Answer Booklet
This paper consists of FIVE questions
Answer any THREE questions

Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (20 Marks)

a) 1 litre of a certain liquid weighs 133.416 KN . Determine SI units:
i) Its unit weight
ii) Its mass density
iii) Its relative density
iv) The volume of 68 kg of the liquid
(12 marks)
b) State FOUR assumptions made in deriving Bernoulli's equation.
(4 marks)
c) Water is flowing through a 5 cm diameter pipe under a pressure of $294.3 \mathrm{KN} / \mathrm{m}^{2}$ (gauge) with a mean velocity of $2.0 \mathrm{~m} / \mathrm{s}$. Find the total head at a cross section which is 5.0 m above the datum.
(4 marks)

Question Two (20 marks)

a) Water having a coefficient of kinematic viscosity (V) of $1.12 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ and a mass density of $1000 \mathrm{~kg} / \mathrm{m}^{3}$ flows at a mean velocity () of $1.75 \mathrm{~m} / \mathrm{s}$ through a 75 mm diameter pipe whose Darcy's $\mathrm{f}=$ 0.0025 .

Determine:
i) The Reynolds number
ii) Whether flow is laminar or Turbulent
iii) The energy loss that would occur in a 10 m length of the pipe.
b) Water is flowing through a tapering pipe $\mathrm{AB}, 100 \mathrm{~m}$ long at a rate of $501 / \mathrm{s}$. Point A is 3.33 m above B . The pipe diameter is 600 mm at A and 300 mm at B. If the pressure at A is $196.2 \mathrm{KN} / \mathrm{m}^{2}$, determining the pressure at B . (Ignore friction losses)
(12 marks)

Question Three (20 marks)

a) Water is flowing through a 200 m long pipe at a rate of $0.2 \mathrm{~m} 3 / \mathrm{s}$. If the head lost due to friction $\left(\mathrm{h}_{\mathrm{f}}\right)$ is 4 m , determine the diameter of the pipe assuming Chezy's $\mathrm{c}=50$.
(10 marks)
b) Two reservoirs are connected by a 300 mm diameter pipe 400 m long. The pipe entry and exit are sudden and Darcy's $f=0.008$. Determine the difference in elevations of the water surfaces in the two reservoirs.
(10 marks)

Question Four (20 marks)

a) A triangular gutter with sided sloping at an angle of 30° to the vertical is conveying water at a rate of $0.04 \mathrm{~m}^{3} / \mathrm{s}$. If the depth of flow is 250 mm and Chezy's $\mathrm{C}=52$, determine the bed slope.
(10 marks)
b) A rectangular channel is to be excavated in rock (Chezy's $\mathrm{C}=50$) to convey water at a rate of $12 \mathrm{~m}^{3} / \mathrm{s}$ at an average velocity of $3 \mathrm{~m} / \mathrm{s}$. Determine the dimensions of the best section.
(10 marks)

Question Five (20 marks)

a) A trapezoidal notch with bottom width of 0.4 m has sides sloping at 45° to the vertical. The head causing flow is 20 cm and $\mathrm{cd}=0.62$ for the rectangular portion and $\mathrm{Cd}=0.60$ for the triangular portion. Determine the discharge...
(7 marks)
b) Define the following terms as applied to notches.
i) Crest or sill
ii) Nappe or vein
c) Differentiate a "notch" from a "weir" in relation to:
i) Material of construction
ii) Where applicable
iii) Size
d) State THREE advantages of a V-notch over a rectangular notch.

