THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE ((A Constituent College of JKUAT)
 (A Centre of Excellence)
 Faculty of Engineering \&Technology in Conjunction with Kenya Institute of Highways and Building \& Technology (KIHBT)

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING

HIGHER DIPLOMA IN BUILDING \& CIVIL ENGINEERING

EBE 3115: THEORY OF STRUCTURES I
END OF SEMESTER EXAMINATION
SERIES: AUGUST 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator
- Drawing Instruments

This paper consists of FIVE questions
Answer any THREE questions

All questions carry equal marks
This paper consists of THREE printed pages
Question One (20 Marks)
a) Illustrate the variation of stress with strain for a mild steel rod subjected to an increasing tension force from zero to failure.
(6 marks)
b) Define the following terms:
i) Proof stress
ii) Elastic limit
iii) Poisson ratio
(6 marks)
c) A steel bar of rectangular cross-section $150 \times 60 \mathrm{~mm}$ is subjected to an axial tension of 250 KN . Determine the changes that result in the cross-sectional dimensions given that $\mathrm{E}=200 \mathrm{KN} / \mathrm{mm}^{2}$ and poisons ratio $=0.4$

Question Two (20 marks)

a) Define the following:
i) Lateral strain
ii) Radius of gyration
iii) Slenderness ratio
iv) Shear force
b) A beam of span ' l ' carries a uniformly distributed load of ' w ' $K N$ per unit length over its entire length. Derive and expression for the maximum bending moment.
(3 marks)
c) A beam is loaded as shown in figure 1 .
i) Calculate the support reactions
ii) Draw the shear force and bending moment diagrams indicating the values at the critical points.
(13 marks)
A

Question Three (20 marks)

a) Derive the equation of theory of simple bending.
b) Determine the maximum moments which can be resisted by the section in figure 1, if the maximum permissible stresses are $105 \mathrm{~N} / \mathrm{mm}^{2}$ and $125 \mathrm{~N} / \mathrm{mm}^{2}$ for top and bottom fibres respectively.
(11 marks)

Figure 2

Question Four (20 marks)

a) For the beam shown in figure 3, sketch the influence line diagram for:
i) The reaction at A
ii) The reaction at B
iii) The bending moment at E.
b) Determine the maximum bending moment at point E in question $4(a)$ when a UDL of $50 \mathrm{KN} / \mathrm{m}$ and 6 m long crosses the beam from C to D .

Question Five (20 marks)

a) Using the method of tension coefficients, determine the forces in the members of the frame shown in figure 4.
(20 marks)

