

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING Kenya Institute of Highways & Building Technology

HIGHER DIPLOMA IN BUILDING & CIVIL ENGINEERING

EBE 3101: MATHEMATICS I

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: FEBRUARY/MARCH 2012 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Mathematical tables/ Calculator

This paper consists of **FIVE** questions Answer question **ONE** and any other **TWO** questions Maximum marks for each part of a question are as shown

This paper consists of **THREE** printed pages **SECTION A (COMPULSORY)**

Question 1

c) Find the equation of the tangent line to the graph of $f(x) = \sqrt{x^2 + 3}$, at the point (-1, 2). (4 marks)

SECTION B (Answer any TWO questions from this section)

Question 2

	:	x + iy	
a)	Write the following	form:	
	3 + 2i + 2(1 - i))	
	(i)		
	$e^{i\pi/4}$		
	(ii)		
	e^2-3i		
	(iii)		(9 marks)
		$z = re^{j\theta}$	

b) Express z = 2.5 + 4.33j in the form . (5 marks)

c) Express the following in polar form:

(i)	3 + 5j	
(ii)	-6 + 3j	(6 marks)

Question 3

(i)
(i) Use De Moivre's theorem to determine,
(i) In each part for the following, evaluate the limit;

$$\lim_{x \to \frac{\pi}{2}} \tan \ln(\sin x)$$
(i)

$$\lim_{x \to \frac{\pi}{2}} -\frac{1}{x^4} = \frac{1}{x^4}$$
(ii)
(i)
$$\lim_{x \to \frac{\pi}{2}} -\frac{1}{x^4} = \frac{1}{x^4}$$
(i) (6 marks)
(8 marks)
Question 4
(6 marks)
(8 marks)
(6 marks)
(8 marks)
(6 marks)
(8 marks)
(9 marks)
(10 marks)
(10 marks)
(10 marks)
(2 marks)
Question 5
(9 marks)
(10 marks)
(10 marks)
(2 marks)
(2 marks)
(3 marks)
(4 marks)
(5 marks)

$$z = (4x^{3} - 2y)(3x + 5y), \qquad \frac{\partial z}{\partial x} \qquad \frac{\partial z}{\partial y}$$

b) Given Find and (8 marks)
c) Find all the complex cube roots of 27*i* (5 marks)