THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
Kenya Institute of Highways \& Building Technology

HIGHER DIPLOMA IN BUILDING \& CIVIL ENGINEERING

EBE 3101: MATHEMATICS I
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: FEBRUARY/MARCH 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Mathematical tables/ Calculator

This paper consists of FIVE questions
Answer question ONE and any other TWO questions
Maximum marks for each part of a question are as shown

This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question 1

$$
\frac{\cos 2 x}{5 x}
$$

a) From the first principles, find the derivative of:

$$
\frac{d y}{d x},
$$

b) Find given:

$$
y=\frac{3-2 x}{3+2 x}
$$

(i)

$$
y=\sec \sqrt[3]{x}
$$

(ii)

$$
y=\arctan x^{2}
$$

(iii)

$$
f(x)=\sqrt{x^{2}+3}
$$

c) Find the equation of the tangent line to the graph of

SECTION B (Answer any TWO questions from this section)

Question 2

$$
x+i y
$$

a) Write the following form:

$$
3+2 i+2(1-i)
$$

(i)

$$
e^{i \pi / 4}
$$

(ii)

$$
e^{2}-3 i
$$

(iii)
b) Express $z=2.5+4.33 j$ in the form $z=r e^{j \theta}$.
c) Express the following in polar form:
(i) $3+5 \mathrm{j}$
(ii) $-6+3 \mathrm{j}$

Question 3

$$
(1+\sqrt{3 i})^{6}
$$

a) Use De Moivre's theorem to determine,
b) In each part for the following, evaluate the limit;

$$
\lim _{x \rightarrow \frac{\pi}{2}} \tan \operatorname{In}(\sin x)
$$

(i)

$$
\lim _{\rightarrow 0}\left[\frac{1}{x^{2}}-\frac{1}{x^{4}}\right]
$$

(ii)
c) Let $\mathrm{z}=1-i$. Find z^{10}

Question 4

$$
\frac{d y}{d x} \quad x=t^{2}+2 t, y=2 t^{3}-6 t
$$

a) Find when $t=2$, given

$$
\frac{d y}{d x}
$$

b) Use logarithmic differentiation to find given;

$$
y=x^{5} \sin 2 x \cos 4 x
$$

(i)

$$
y=\frac{(3 x+1) \cos 2 x}{e^{2 x}}
$$

(ii)

$$
\frac{d y}{d x} \quad y=\frac{e^{5 x}(3 x+1)}{\cos 2 x}
$$

c) Find given,

Question 5

$$
y=x^{3}-2 x^{2}+4
$$

a) Find the equation of the tangent to at $(2,4)$.

$$
z=\left(4 x^{3}-2 y\right)(3 x+5 y), \quad \frac{\partial z}{\partial x} \quad \frac{\partial z}{\partial y}
$$

b) Given Find and
c) Find all the complex cube roots of $27 i$

