

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)

Faculty of Engineering & Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

BACHELOR OF ENGINEERING IN BUILDING & CIVIL ENGINEERING (BEBC) [Institutional Based Programmes]

EBC 4404: FOUNDATION ENGINEERING II

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2012 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

- Scientific Calculator

This paper consists of **FIVE** questions. Answer any **THREE** questions Maximum marks for each part of a question are as shown This paper consists of **TWO** printed pages

Question One (30 marks)

a) With the aid of neat sketches, illustrate the following types of cast-in-situ piles:

- (i) Straight bored pile
- (ii) Single bulb pile
- (iii) Multi-bulb pile
- **b)** A concrete pile of 40cm diameter is required to be driven into homogenous mass of cohesionless soil. The pile carries a safe load of 650kN. A static cone penetration test conducted at the site indicates an

 $q_c = 40 kg / cm^2$

average value of $F_s = 2.5$ along the pile and 120kg/cm^2 below the pile tip. Compute the (11 marks)

(9 marks)

- structure was found to have settled by 1.6cm in 6 months after the completion of the construction. If the clay layer is underlain by rock and overlain by a layer of coarse sand, determine:
 - a) The time required for 50% consolidation to occur
 - b) The amount of settlement which will take place in the next six months. (20 marks)

Question Five (20 marks)

Question Four (20 marks)

a) Briefly describe THREE disadvantages of field tests in determining soil bearing capacity.

(9 marks)

b) A strip footing 2m wide carries a load intensity of 400kPa at a depth of 1.2m in sand. The saturated unit weight of sand is 19.5KN/m³ and unit weight above water table is 16.8kN/m³.

c) (i) State any THREE advantages of standard Penetration Tests (SPT).

(ii) An R.C.C column footing of 5.8m x 1.8m size is founded at 1.5m below G.L. The subsoil consists $\delta = 20^{\circ}$, $C = 1.1t/m^2$ of a loose deposit of silty sand having the following properties: $= 1.75t/m^3$, Determine the ultimate bearing capacity of the footing when the ground water table is located 0.6m below ground level. (10 marks)

Question Two (20 marks)

- a) (i) Briefly describe **FIVE** features contained in a borehole log.
 - (ii) The observed standard penetration test value in a deposit of a fully submerged sand was 45 at a depth of 6.5m. The average effective unit weight of the soil is 9.69kN/m³; hammer efficiency = 0.8; drill road length correction factor = 0.9 and borehole correction factor = 1.05. Determine the corrected SPT value for standard energy

 $R_{es} = 60\%$ and $R_{es} = 70\%$

Question Three (20 marks)

- a) (i) Outline any SIX factors considered in the selection of piles.(ii) Define the term "Negative skin friction"
- b) A group of 9 piles with 3 piles in a row was driven into a soft day extending from ground level to a great depth. The diameter and the length of the piles were 30cm and 10m respectively. The unconfined compressive strength of the clay is 70kPa. If the piles were placed 90cm c/c, compute the allowable load on the pile group on the basis of a shear failure criterion for a factor of safety of 2.5

The consolidation settlement of a new structure founded on a 5m thick layer is estimated as 6.5cm. The

(12 marks)

(10 marks)

(10 marks)

(8 marks)

$$\phi = 35^{\circ}$$

If c = 0 and , determine the factor of safety when: (i) Water table is at Ground level

- (ii) Water table is 4m below grand level

Take $N_q = 41.4$ and $N \equiv 42.4$

(11 marks)