

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT) Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

Institutional Based Program

UNIVERSITY EXAMINATION FOR BACHELOR OF ENGINEERING IN BUILDING & CIVIL ENGINEERING (YR 3, SEM 2)

EBC 4321: HYDROLOGY

END OF SEMESTER EXAMINATION

SERIES: APRIL 2012 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

• Answer Booklet This paper consists of FIVE questions in TWO sections I & II Answer question ONE (Compulsory) and any other TWO questions Maximum marks for each part of a question are clearly shown This paper consists of THREE printed pages

SECTION I (Compulsory)

Question 1

a)	Define hydrology	(2 marks)
b)	With an aid of a diagram, describe the hydrological cycle	(10 marks)
c)	Discuss any FOUR methods used in estimation of the average rainfall over an area (a	areal rainfall)
	from point measurements	(10 marks)
d)	What are the sources of errors in rain gauge measurements	(8 marks)

SECTION II (Answer any TWO questions)

Question 2

Question 3				
c)	What are the possible errors in discharge measurements	(9 marks)		
b)	Discuss any THREE methods of dealing with missing rainfall measurements	(9 marks)		
a)	Differentiate between non-recording gauge and recording gauge	(2 marks)		

- a) What are the possible causes of missing data (4 marks)
- b) The annual precipitation data for two sites are as shown below in a table. The record for the year 1971 is missing. Complete the table using simple linear regression method

Year	t	Xt	Y _t
1961	1	10.2	6.1
1962	2	8.5	9.5
1963	3	2.8	1.8
1964	4	5.4	6.0
1965	5	15.2	9.5
1966	6	10.1	5.3
1967	7	9.2	2.3
1968	8	14.8	11.6
1969	9	11.1	7.7
1970	10	6.6	3.0
1971	11	3.3	?
Means			
Biased Standard I	Deviation S		
Unbiased Standar	d Deviation S*		

c) Climatic and physiographic factors mainly influence the run-off of an area. Which are these climatic factors (6 marks)

Question 4

- a) With an aid of a sketch, explain how one can estimate rainfall by employing isoyetal analysis method. (8 marks)
- b) Using the figure below, estimate the mean aerial precipitation for the river basin (12 marks)

Other details include the following:

A 1.1 B 0.5)
B 0.2	-
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
C 0.6	
D 1.4	
E 1.4	

Question 5

a) Given the following data, A, B, C and Y where normal annual precipitation NP(A), NP(B), NP(C) and NP(Y) are available. Assuming that on a given rainy day *t*, the precipitation at gage Y is missing. Estimate P_t(Y) based on the gage readings at the other stations by using inverse distance method. The data available were:

	$P_t(A) =$ $Pt (B) =$ $Pt (Y) =$	98mm, NP(A) = 1,008mm 80 mm, NP (B) = 842 mm ?mm, NP(Y) = 880mm	(2 marks)
b)	Mention p	parameters that define rainfall	(5 marks)
c)	(i) Co (ii) Or (iii) Fro	rt notes on the following: onvection rainfall ographic lifting ontal lifting opical depression or hurricanes	(8 marks)
d)	Discuss pr	rocedure of determining discharge in a river	(5 marks)