



# THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

## (A Constituent College of Jkuat)

# Faculty of Engineering and Technology

## DEPARTMENT OF BUILDING & CIVIL ENGINEERING

## INSTITUTIONAL BASED PROGRAMME

## **BACHELOR OF ENGINEERING IN BUILDING & CIVIL ENGINEERING**

## EBC 4303: REINFORCED CONCRETE DESIGN

## SERIES NOVEMBER 2011

## TIME 2HOURS

## **INSTRUCTION TO CANDIDATES**

You should have the following for this examination

- Answer Booklet
- Scientific Calculator

This paper consists of <u>FIVE</u> questions, question <u>ONE</u> is compulsory, Answer question <u>ONE</u> and any other <u>TWO</u> question Maximum marks for each part of a question are as shown.

## Question 1

- a) (i) What is the aim of Limit State design
  - (ii) Briefly explain ultimate limit state and state the criteria that should be complied with for it.
  - (iii) State any **FOUR** serviceability limit states and mention how each would make the structure unfit for use. (8 marks)
- b) State the reasons for the following being greater than anticipated in Limit state design
  - (i) Material Strength
  - (ii) Load

(3 marks)

c) State the purposes of the safety factor for

| (i)                            | Load     |           |
|--------------------------------|----------|-----------|
| (ii)                           | Strength | (4 marks) |
| Define characteristic strength |          | (5 marks) |

#### **Question 2**

d)

a) A five-storey building of the cross-section shown in figure 1. Has the following characteristic loads on the frame.

| Roof:               |        |
|---------------------|--------|
| Dead Load           | 24KN/m |
| Imposed Load        | 8KN/m  |
| Parapet Point Load  | 14KN   |
| -                   |        |
| Floors:             |        |
| Dead Load           | 20KN/m |
| Imposed Load        | 25KN/m |
| Cladding-point Load | 16KN/m |
|                     |        |

Fig 1. Determine the maximum ultimate design load for the left-hand column (12 marks)

b) (i) Explain the two methods of manufacturing prestressed concrete.

(ii) State the advantages and disadvantages of prestressed concrete (8 marks)

## Question 3

A reinforced concrete floor slab spans between two 200mm thick solid concrete block walls distance 4.5m centre to centre apart. If the floor is subjected to an imposed load of 3.5KN/m<sup>2</sup> design the main reinforcement to be provided for the slab.

Assume mild exposure conditions and the following material strength properties:-

 $F_{cu} = 35 \text{N/mm}^2$   $f_y = 460 \text{N/mm}^2$  (20 marks)

## Question 4

A 350mm square internal column of 4.5m clear height supports characteristic dead and imposed loads of 1,00KN each. The column is in a braced two storey building and the load is transmitted to it through an approximately symmetrical arrangement of beams size 350mm wide x 600mm deep.

Design the longitudinal reinforcement and links for the column given that: f (20 marks)

#### Question 5

A reinforced concrete beam spans 6.0m between the centres of supporting columns size 300 x 300mm. The beam is of cross-sectional size 300mm wide by 600 mm deep and it carries dead and imposed loads of 25 and 19KN/m respectively. Assuming mild exposure condition design the main reinforcement for the beam given the following material strength properties.

 $Fcu = 30N/mm^2$ ,  $fy = 460N/mm^2$ 

(20 marks)