THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE ((A Constituent College of JKUAT)
 (A Centre of Excellence)
 Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
UNIVERSITY EXAMINATION FOR DEGREE IN BACHELOR OF ENGINEERING IN BUILDING \& CIVIL ENGINEERING (Institutional Based Programme)

EBC 4222: STRENGTH OF MATERIALS II

SPECIAL/SUPPLEMENTARY EXAMINATION
 SERIES: OCTOBER 2012
 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator/Mathematical Tables

This paper consists of FIVE questions.
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question One (30 marks)
a) A hollow circular shaft is designed to transmit 130 KW at 1.65 Hz . The inside diameter of the shaft is to be one half of the outside diameter. If allowable shear stress is to be 45 Mpa , calculate the required minimum shear stress outside diameter.
(15 marks)
b) Figure 1 shows a section of a strat 3.0 m long.

Figure 1

Determine the Evier buckling load for the following cases:
i) Both ends of the struts pinned
ii) One end fixed and the one pinned
iii) Both ends of the strut fixed

Take $\mathrm{E}=210 \mathrm{GN} / \mathrm{m}^{2}$

SECTION B (ATTEMPT ANY TWO QUESTIONS FROM THIS SECTION)

Question Two (20 marks)

A beam has its cross-section shown in figure 2.

Figure 2

The beam is subjected to an axial load of 170 KN and a sugging moment of 25 KNm . Determine:
i) Maximum compressive stress
ii) Tensile stress

Assume both compressive and tensile for the axial load

Question Three (20 marks)

a) A hollow circular to be 0.55 m long has an inside and outside diameters of 30 mm and 40 mm respectively. The tube is subjected to twisting by torque T applied at both ends. Calculate the shear modulus of elasticity for the material.

$$
\phi=0.005
$$

Take: Angle of rotation radius
Torque $\mathrm{T}=640 \mathrm{Nm}$
(8 marks)
b) A wooden beam of dimensions $\mathrm{b}=200 \mathrm{~m}$ and $\mathrm{h}=300 \mathrm{~mm}$ is reinforced on its sides by steel plates 12 mm thick. Calculate the allowable bending moment about the axis of the beam.

Take: \quad Modulus of elasticity for steel $=2004 \mathrm{Gpa}$
Modulus of elasticity for wood $=8.5 \mathrm{Gpa}$
Allowable stress for steel $=130 \mathrm{Mpa}$
Allowable stress for wood $=8.5 \mathrm{Mpa}$
(12 marks)

Question Four (20 marks)

a) A simply supported wooden composite beam is loaded with a single concentrated load P at mid span. The beam has a span of 4 m . The beam sections $(b=150 \mathrm{~mm}$ and $h=250 \mathrm{~mm})$ is reinforced with a steel plate 10 mm thick. Determine the minimum load P if the allowable stresses in wood and steel are 70 Mpa and 100 Mpa respectively.

Take: Young's Modulus for wood $=210 \mathrm{Gpa}$
Young's Modulus for steel $=10 \mathrm{Gpa}$
(20 marks)

Question Five (20 marks)

Figure 3 shows a cross-section of a retaining wall:
Figure 3

Determine lateral earth pressure distribution for the wall.
Take: $\quad \zeta_{\text {w }}$ for the wall material $=24 \mathrm{KN} / \mathrm{m}^{3}$
${ }_{\text {s }}$ for the soil $=18 \mathrm{KN} / \mathrm{m}^{3}$

$$
\phi=35^{\circ}
$$

Angle of internal friction

$$
\beta=25^{\circ}
$$

Retained soil slopes at to the horizontal

