THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN BUILDING \& CIVIL ENGINEERING

EBC 4221: STRENGTH OF MATERIALS II

SPECIAL/SUPPLEMENTARY EXAMINATON
SERIES: OCTOBER 2011
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Battery Powered Programmable Calculators

This paper consists of FIVE questions. Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

SECTION A (COMPULSORY)

Question 1

a) A hollow circular shaft is being designed to transmit 120 KW at 1.75 Hz . The inside diameter of the shaft is to be one-half of the outside diameter. Assuming that the allowable shear stress is 45 Mpa , calculate the minimum required outside diameter d.
b) A strut has the following cross section:

In the length of the strut is 3.0 calculate the Euler buckling load if;
i) Both ends of the strut are pinned
ii) Both ends of the struts are fixed
iii) One end is fixed and the other pinned

Take $\mathrm{E}=210 \mathrm{GN} / \mathrm{m} 2$.

SECTION B (Answer any TWO questions from this section)

Question 2

a) A hollow circular tube of metal is subjected to twisting by torques T applied the ends. The bar has a length $\mathrm{L}=0.5 \mathrm{~m}$ and the inside and outside diameters are 30 mm and 40 mm , ϕ respectively. It is determined by measurement that the angle of rotation is 0.068 radians when the torque T is 650 Nm . Calculate the shear modulus of elasticity G for the material.
marks)
b) A wood beam of dimensions $b=200 \mathrm{~mm}$ and $\mathrm{h}=300 \mathrm{~mm}$ is reinforced on its sides by steel plates 12 mm thick. The moduli of elasticity for the steel and wood are $\mathrm{E}_{\mathrm{s}}=204 \mathrm{Gpa}$ and $\mathrm{E}_{\mathrm{w}}=$
$\sigma_{s} \quad \sigma_{w}$ 8.5 Gpa , respectively. Also the corresponding allowable stresses are $=130 \mathrm{Mpa}$ and $=8.5 \mathrm{Mpa}$. Calculate the maximum allowable bending moment $\mathrm{M}_{\text {max }}$ about the x -axis.
(12 marks)

Question 3

A simply supported composite beam is loaded with a single concentrated load P at midspan. The beam has a span of 4 m and is made of wood section ($\mathrm{b}=150 \mathrm{~mm}$ and $\mathrm{h}=250 \mathrm{~mm}$) reinforced with a steel plate 150 mm wide by 10 mm thick at its lower side. Determine the minimum load P if the allowable stresses in wood and steel are Mpa and 100 Mpa respectively. Take Young's modulus to be 210 Gpa for steel and 10 Gpa for wood.
(20 marks)

Question 4

A beam has the following cross-section:

If it is subjected to an axial load of 180 KN and a sagging moment of 24 KNm , determine the maximum compressive and tensile stresses acting on the beam if the axial load were both compressive and tensile.

Question 5

Determine the earth pressure distribution for the retaining wall shown:

Use the following data:
γ_{m}
for wall material $=24 \mathrm{KN} / \mathrm{m}^{3}$
γ_{s}

$$
\text { for wall soil }=18 \mathrm{KN} / \mathrm{m}^{3}
$$

Angle of internal friction $=35^{\circ}$
Retained soil slopes at 25° to the horizontal
Assume same soil retained on both sides of the wall.

