THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

UNIVERSITY EXAMIANTION FOR BACHELOR OF SCIENCE IN BUILDING \& CIVIL ENGINEERING

EBC 4201: STRENGTH OF MATERIALS I

SPECIAL/SUPPLEMENTARY EXAMINATON

SERIES: OCTOBER 2011
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Battery Powered Programmable calculators

This paper consists of FIVE questions. Answer question ONE (COMPULSORY) and any other TWO questions Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question 1

a) Explain the meaning of the following terms:
i. Stress
ii. Strain
iii. Brittle Material
iv. Ductile Material
v. Elasticity
vi. Plasticity
vii. Creep
(1 mark)
(1 mark)
(1 mark)
(1 mark)
(2 marks)
(2 marks)
(2 marks)
b) Draw a neat sketch of the stress-strain curve for steel in tension showing all the important points
c) Determine the maximum allowable span length L for a simply supported beam of rectangular cross-section ($\mathrm{b}=150 \mathrm{~mm}$ and $\mathrm{h}=300 \mathrm{~mm}$) subjected to a uniformly distributed load of $\mathrm{q}=$ $6.5 \mathrm{KN} / \mathrm{m}$ if the allowable bending stress is 8.2 Mpa . (The weight of the beam is included in the load q)

SECTION B (Answer any TWO questions from this section)

Question 2

$$
\frac{M}{1}=\frac{E}{R}=\frac{\sigma}{y}
$$

a) List the FOUR assumptions made in the derivation of the expression
(4 marks)
b) Calculate the moment of resistance of the beam section shown in the figure 1 below if the stresses in the upper and lower flanges are limited to $25 \mathrm{~N} / \mathrm{mm}^{2}$ and $40 \mathrm{~N} / \mathrm{mm}^{2}$, respectively.
(16 marks)
Fig 1

Question 3

A tensile test has been carried out on a mild steel specimen 10 mm thick and 50 mm wide rectangular cross section. An extensometer was attached over a 100 mm gauge length and load extension readings were obtained as follows:

Load (KN)	16	32	64	96	128	136	144	152	158
Extension (mm)	0.016	0.032	0.064	0.096	0.128	0.13 7	0.147	0.173	0.605

Load (KN)	154	168	208	222	226	216	192	185.4
Extension (mm)	1.18	2.42	7.2	12.0	16.	22.0	24.	fractur
	1		5		8		0	e

Plot the stress strain curves and determine values ofr (i) Young's Modulus; (ii) Proportional limit stress; (iii) yield point stress; (iv) the ultimate tensile stress; (v) percent elongation (vi) 0.2% proof stress.
(20 marks)

Question 4

a) A thin strip of copper $(E=120 \mathrm{GPa})$ having length $\mathrm{L}=1.5 \mathrm{~m}$ and thickness $\mathrm{t}=1 \mathrm{~mm}$ is bent into a circle and held with the ends just touching. Calculate the maximum bending stress $\sigma_{\text {max }}$ in the strip
b) A wide flanged beam (see figure 2) having cross-sectional dimensions $\mathrm{b}=160 \mathrm{~mm}, \mathrm{t}=10$ $\mathrm{mm}, \mathrm{h}=500 \mathrm{~mm}$ and $\mathrm{h}_{1}=480 \mathrm{~mm}$ is subjected to a shear force $\mathrm{V}=200 \mathrm{KN}$.

Fig 2
i. Calculate the maximum and minimum shear stresses ${ }_{\tau_{\text {aver }}}^{\tau_{\text {and }}}{ }^{\tau_{\min }}$ in the web.
ii. Compare the maximum with the average shear stress obtained by dividing V by the area of the web.
$V_{\text {web }}$
iii. Calculate the total shear force carried in the web.
(16 marks)

Question 5

$$
\sigma_{x}=50 M p a \quad \sigma_{y}=-30 M p a \quad \text { and } \quad \text { acting }
$$

$$
\tau_{x y}=40 M p a
$$

together with shearing stresses . Determine by calculation:
i. The maximum shearing stresses (2 marks)
ii. The principal stresses (4 marks)
iii. The normal and shearing stresses acting on the faces of an element rotated through an angle of 30°.
(6 marks)
b) Represent all the information in (a) above on a Mohr Circle
(8 marks)

