THE MOMBASA POLYTECHNIC UNIVERSITY
 COLLEGE

(A Constituent College of JKUAT)
Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
DIPLOMA IN BUILDING \& CIVIL ENGINEERING (DBC 10B)
DIPLOMA IN CIVIL ENGINEERING (DC 10B)
DIPLOMA IN ARCHITECTURE (DA 10B)
EBC 2212: THEORY OF STRUCTURES II
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2011

TIME: 2 HOURS

[^0]
SECTION A (COMPULSORY)

Question 1 (30 marks)

a) State the first and second Mohr's Theorem and give their mathematical expressions (6 marks)
b) Figure 1. Shows a simple beam supported at point A and B acted on by two moving points loads 1.0 apart.
(i) Sketch the influence line diagrams for RA, RB, shear force and bending moment at point E on the beam.
(ii) Determine the maximum shear force and bending moment at point E on the beam
(24 marks)

$$
\mathrm{R}_{\mathrm{A}}
$$

SECTION B (Answer any TWO questions from this section)

Question 2 (20 marks)

A simply supported beam has a span of 20 m . A uniformly distributed load of $20 \mathrm{KN} / \mathrm{m}$ and 5 m long, crosses the span. Find the maximum bending moment produced at a point 8 m from the left support.
(20 marks)

Question 3 (20 marks)

A cantilever 12 cm wide and 20 cm deep is 2.5 m long. What uniformly distributed load should the beam carry to produce a deflection of 0.5 cm at the free end? Take $\mathrm{E}=2 \mathrm{X} 10 \mathrm{~kg} / \mathrm{cm}^{2}$
(20 marks)

Question 4 (20 marks)

Using Macaulay's method, determine deflection at mid-span for figure 2 below.

100KN

Question 5 (20 marks)

Using influence lines, determine the maximum bending moment at a point 20 m from the left hand support of the girder shown in figure 3 when the loads move from A to B

Fig. 3

[^0]: Instructions to Candidates:
 You should have the following for this examination

 - Answer Booklet

 This paper consists of FIVE questions
 Answer question ONE (COMPULSORY) from SECTION A and any other TWO questions from SECTION B
 Maximum marks for each part of a question are clearly shown
 This paper consists of THREE printed pages

