THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING DIPLOMA IN BUILDING \& CIVIL ENGINEERING DIPLOMA IN CIVIL ENGINEERING

EBC 2206: FLUID MECHANICS I
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: MAY/JUNE 2012
TIME: 2 HOURS

Instructions to Candidates:
You should have the following for this examination

- Answer Booklet

This paper consists of FIVE questions. Answer any THREE questions
Maximum marks for each part of a question are clearly shown
This paper consists of FOUR printed pages

Question 1 (Compulsory - 20 marks)

a) 6800 kg of a certain substance has a volume of $0.5 \mathrm{~m}^{3}$. Determine:
(i) Its mass density
(ii) Its unit weight
(iii) The volume of 800 kg of the substance
(iv) Whether the substance will float or sink in water
b) Define the following terms, giving their SI units
(i) Force
(ii) Mass
(iii) Energy
(iv) Power
c) State FOUR desirable properties of a manometer liquid for an inverted U-tube manometer

Question 2 (20 marks)

a) The pressure in a pipe at m is measured by an open manometer as shown in figure 1 .

Mercury

Determine
(i) Gauge pressure at m
(ii) Absolute pressure at M if atmospheric pressure is $101.3 \mathrm{KN} / \mathrm{m}^{2}$
b) Define the following terms:
(i) Buoyancy
(ii) Metacentre
(iii) Centre of buoyancy
(iv) Metacentric height
c) With the aid of a sketch, briefly describe the term neutral equilibrium of a solid body

Question 3 (20 marks)

a) A circular plate is immersed in water as shown in figure 2.
$2 m$

Determine:
(i) The total pressure on one face of the plate
(ii) The depth of total pressure
b) The curved gate AB is circular-cylindrical of 1 m radius, as shown in figure 3 .

Determine:
(i) The total pressure on gate AB
(ii) The angle at which the total pressure acts

Question 4 (20 marks)

a) An oil of specific gravity 0.8 is flowing in a pipe at a rate of 20001 ps with a velocity of $3 \mathrm{~m} / \mathrm{s}$. Determine:
(i) The diameter of the pipe
(ii) The mass flow rate of the oil
b) Water is flowing through a horizontal pipe AB 100 m long. The pipe tappers uniformly form 300 mm diameter at A to 200 mm diameter at B . The pressure at A is 100 Kpa and the flow rate is $501 / \mathrm{s}$. Determine the pressure at B in
(i) $\mathrm{N} / \mathrm{m}^{2}$
(ii) mm of mercury
c) Water is flowing through a pipe BC which forks into two pipes CD and CE as shown. $\mathrm{Q} 3=1 / 2 \mathrm{Q} 2$ and other details as shown in figure 4

Figure 4

Determine
(i) Velocity in BC
(ii) Diameter of CD
(iii) Discharge Q_{2}
(iv) Discharge Q_{3} (8 marks)

Question 5 (20 marks)

a) (i) State "Bernoulli's theorem"
(ii) State FOUR assumptions made in deriving Bernoulli's theorem
b) Define the following terms:
(i) Uniform flow
(ii) Steady flow
(iii) Turbulent flow
(iv) Laminar flow
c) Sketch and label a pitot static tube

