

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT) Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

DIPLOMA IN BUILDING & CIVIL ENGINEERING

DIPLOMA IN CIVIL ENGINEERING

EBC 2206: FLUID MECHANICS I SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: MAY/JUNE 2012

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination
Answer Booklet
This paper consists of FIVE questions. Answer any THREE questions
Maximum marks for each part of a question are clearly shown
This paper consists of FOUR printed pages

Question 1 (Compulsory – 20 marks)

- a) 6800kg of a certain substance has a volume of 0.5m³. Determine:
 - (i) Its mass density
 - (ii) Its unit weight
 - (iii) The volume of 800 kg of the substance
 - (iv) Whether the substance will float or sink in water (8 marks)
- b) Define the following terms, giving their SI units
 - (i) Force
 - (ii) Mass
 - (iii) Energy
 - (iv) Power (8 marks)
- c) State FOUR desirable properties of a manometer liquid for an inverted U-tube manometer

(4 marks)

Question 2 (20 marks)

a) The pressure in a pipe at m is measured by an open manometer as shown in figure 1.

Mercury

Determine

b)

(i) (ii)	Gauge pressure at m Absolute pressure at M if atmospheric pressure is 101.3KN/m ²	(8 marks)
Define	e the following terms:	
(i)	Buoyancy	
(ii)	Metacentre	
(iii)	Centre of buoyancy	
(iv)	Metacentric height	(8 marks)

c) With the aid of a sketch, briefly describe the term neutral equilibrium of a solid body

(4 marks)

Question 3 (20 marks)

a) A circular plate is immersed in water as shown in figure 2.

2m

Determine:

- (i) The total pressure on one face of the plate
- (ii) The depth of total pressure

(10 marks)

b) The curved gate AB is circular-cylindrical of 1m radius, as shown in figure 3.

Determine:

- (i) The total pressure on gate AB
- (ii) The angle at which the total pressure acts

Question 4 (20 marks)

- a) An oil of specific gravity 0.8 is flowing in a pipe at a rate of 2000lps with a velocity of 3m/s. Determine:
 - (i) The diameter of the pipe
 - (ii) The mass flow rate of the oil
- b) Water is flowing through a horizontal pipe AB 100m long. The pipe tappers uniformly form 300mm diameter at A to 200mm diameter at B. The pressure at A is 100 Kpa and the flow rate is 50l/s. Determine the pressure at B in

(6 marks)

(10 marks)

(i)	N/m^2
-----	---------

(ii) mm of mercury

c) Water is flowing through a pipe BC which forks into two pipes CD and CE as shown. $Q3 = \frac{1}{2}Q2$ and other details as shown in figure 4

Figure 4

Determine

	(i) (ii) (iii) (iv)	Velocity in BC Diameter of CD Discharge Q ₂ Discharge Q ₃	(8 marks)
Qu	estio	n 5 (20 marks)	
a)	(i) (ii)	State "Bernoulli's theorem" State FOUR assumptions made in deriving Bernoulli's theorem	(6 marks)
b)	Defi (i) (ii) (iii) (iii)	ne the following terms: Uniform flow Steady flow Turbulent flow	(8 marks)
	(1)		(0 marks)

c) Sketch and label a pitot static tube (6 marks)