THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE (A Constituent College of JKUAT)

(A Centre of Excellence)
Faculty of Engineering \&
Technology
DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
DIPLOMA IN BUILDING \& CIVIL ENGINEERING
EBC 2202: THEORY OF STRUCTURES I
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: OCTOBER 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination
Answer Booklet

- Calculator

This paper consists of FIVE questions. Answer any THREE questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One (20 marks)
a) Figure 1 shows a universal beam section strengthened by the addition of a steel plate at the top. Determine the actual stresses at points A, B, C and D if a force of 400 KN acts on the section as shown. The properties of the U.B are:

$$
\begin{aligned}
& \mathrm{D}=310.4 \mathrm{~mm} \\
& \mathrm{~A}=60.8 \mathrm{~cm}^{2} \\
& \mathrm{I}_{\mathrm{xx}}=9485 \mathrm{~cm}^{4} \\
& \mathrm{I}_{\mathrm{yy}}=438 \mathrm{~cm}^{4} \\
& \mathrm{~B}=125.2 \mathrm{~mm}
\end{aligned}
$$

The indicated axes $x x$ and $y-y$ are for the universal beams
(20 marks)

B

Question Two (20 marks)

Determine deflection under each point load of the beam in figure 2. Using Macaulay's method. Take $\mathrm{E}=$ $2.0 \times 105 \mathrm{~N} / \mathrm{mm}^{2}$. $\mathrm{I}=10^{9} \mathrm{~mm}^{4}$
(20 marks)

Question Three (20 marks)

a) State FOUR assumptions upon which Euler's formula is based:
b) A Tubular pin-jointed strut 3 m long has an outer and inner diameter of 37.5 mm and 32.5 mm respectively. Compare the crippling loads given by Eucers and Rankines formula for the strut given the following:
Yield stress $\quad=\quad 330 \mathrm{~N} / \mathrm{mm}^{2}$
Rankines Constant $=1 / 7500$
(20 marks)

Question Four (20 marks)

A masonry pier of $3 \mathrm{~m} \times 4 \mathrm{~m}$ supports a vertical load of 80 KN as in figure 3 .
3 m
a) Find the stresses developed at each corner of the pier.
b) What additional load should be placed at the centre of the pier, so that there is no tension anywhere in the pier section?
c) What are the stresses at the corners with additional load in the centre?

Question Five (20 marks)

a) A hollow alloy tube 5 m long with diameter 40 mm and 25 mm respectively was found to extend 6.4 m under a tensile load 60 KN . Find the buckling load for the tube when used as a strut with both ends pinned. Also find the safe load on the tube, taking factor of safety as 4.
b) Obtain expressions for the slope and deflection at the free end of a cantilever carrying a uniformly distributed load as shown in figure 4.
(20 marks)
A

