THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
(A Constituent College of JKUAT)
Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
DIPLOMA IN CIVIL ENGINEERING (DC 011)
DIPLOMA IN BUILDING \& CIVIL ENGINEERING (DBC 011)
EBC 2201: STRENGTH OF MATERIALS I
SPECIAL/SUPPLEMENTARY 2012
SERIES: MAY/JUNE 2012

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Calculator

This paper consists of FIVE questions
Answer question any THREE questions
Maximum marks for each part of a question are clearly shown
This paper consists of THREE printed pages

Question 1 (20 marks)

a) Illustrate the variations of stress with strain for a mild steel rod subjected t an increasing tension force from zero to failure
b) Define the following terms:
i) Proof stress
ii) Elastic limit
iii) Poisson ratio
c) A steel bar rectangular cross-section $150 \times 60 \mathrm{~mm}$ is subjected to an axial tension of 250 KN . Determine the changes that result in the cross-sectional dimensions. Given that $\mathrm{E}=200 \mathrm{KN} / \mathrm{mm}^{2}$, and poisons ratio $=0.4$

Question 2 (20 marks)

A beam is loaded as shown in figure 4.
a) Calculate the support reactions.
b) Draw the shear force and bending moment diagrams indicating the values at the critical points.
(20 marks)
B

Question 3 (20 marks)

a) Figure 2 shows the cross-section of built up beam made of steel and a plate. Determine:
i) The position of the centroid along $\mathrm{x}-\mathrm{x}$ axis
ii) The second moment of area about xx axis

Figure 1

Question 4 (20 marks)

a) State FIVE assumptions made in the analysis of pin jointed plane frames.
b) Using the resolution of joints method. Determine the nature of magnitude of the force for the members of the frame shown in figure 3

Figure 3

Question 5 (20 marks)

Draw SFD and BMD for the figure 4: and then determine the point of contraflexure:

A

