THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
 (A Constituent College of JKUAT)

(A Centre of Excellence)
Faculty of Engineering \&
Technology
DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
HIGHER DIPLOMA IN BUILDING AND CIVIL ENGINEERING
EBC 3120: HYDRAULICS

SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: OCTOBER 2012
TIME: 2 HOURS

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions
Answer question any THREE questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One (20 marks)
a) The triangular gutter shown in figure 1 is conveying water at a rate of $0.04 \mathrm{~m}^{3} / \mathrm{s}$. If Chezy's $\mathrm{C}=52$, determine the gradient of the gutter

Figure 1
b) A trapezoidal canal has a bed width of 8 m , depth of flow 2.4 mf side slopes of $1: 3(\mathrm{H}: \mathrm{V})$ as shown in figure 2. Manning $n=0.0197$ and the bed slope is $1: 4000$, determine:
i. Average flow velocity
ii. Discharge in the channel

Fig 2

Question Two (20 marks)

A concrete lined circular channel 3.6 m diameter has a bed slope of 1:600. Determine:
i) Maximum velocity
ii) Discharge at maximum velocity
iii) Maximum discharge
iv) Velocity of maximum discharge

Question Three (20 marks)
a) A rectangular channel is to convey $0.5 \mathrm{~m} / \mathrm{s}$ and have a bed slope of 1:2000. Given that Chezy's $\mathrm{C}=$ 50, Design the channel.
b) A rectangular channel 8 m wide is conveying water at a rate of $1 \mathrm{~m}^{3} / \mathrm{s}$. The depth of flow is $1: 2 \mathrm{~m}$. Determine:
i) Specific energy of flowing water
ii) Critical depth
iii) Critical velocity
iv) Minimum specific energy
v) Froude's number
vi) Whether flow is critical, subcritical or supercritical.
(12 marks)

Question Four (20 marks)

a) A 3.6 m wide rectangular channel conveys $9.0 \mathrm{~m} 3 / \mathrm{s}$ of water with a velocity of $6 \mathrm{~m} / \mathrm{s}$. Determine:
i) The height of the resulting hydraulic jump
ii) Loss of head due to the jump
(12 marks)
b) A venturi flume is 1.50 m wide at the entrance and 0.7 m at the throat. The depth of flow is 0.70 m at the entrance and at the throat is 0.50 m . Neglecting hydraulic losses in the flume determine the flow rate.
c) Differentiate a "pump" from a "compressor"
(4 marks)

Question Five (20 marks)

a) State TWO reasons of using air vessels in reciprocating pumps.
b) With the aid of a sketch, briefly describe the working principle of single acting reciprocating pump.
(9 marks)
c) A single acting reciprocating pump running at $55 \mathrm{r} . \mathrm{p} . \mathrm{m}$ delivers $0.008846 \mathrm{~m}^{3} / \mathrm{s}$ of water. The diameter of the piston is 200 mm and the stroke length is 300 mm . The suction and delivery are 3 m and 11 m respectively. Determine:
i) Theoretical discharge
ii) Coefficient of discharge
iii) Percentage slip of the pump
iv) Power required to run the pump

