THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
(A Centre of Excellence)
Faculty of Engineering \&
Technology
DEPARTMENT OF BUILDING \& CIVIL ENGINEERING HIGHER DIPLOMA IN BUILDING \& CIVIL ENGINEERING

EBC 3108: FLUID MECHANICS
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: OCTOBER 2012
TIME: 2 HOURS

You should have the following for this examination

This paper consists of FIVE questions. Answer question any THREE questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (20 Marks)

a) A flow nozzle 100 mm diameter is installed in a 300 mm diameter water pipe. A differential mercury manometer connected to the inlet and throat of the meter reads a deflection of 250 mm . If the coefficient of a deflection of 250 mm . If the coefficient of the meter $\mathrm{Cd}=0.95$, determine the discharge in:
i) L / s
ii) $\mathrm{Kg} / \mathrm{min}$
b) A siphon has a uniform diameter of 75 mm and consists of a bent pipe with its crest 1.8 m above the water with its crest 1.8 m above the water level, discharging into the atmosphere 3.6 m below the water level. Assuming that the atmospheric pressure to be 10 m of water and neglecting friction losses, determine:
i) Velocity of flow
ii) Discharge
iii) Absolute pressure at the crest level
(10 marks)

Question Two (20 Marks)

a) The actual velocity in the contracted section of a jet of liquid flowing from a 5 cm diameter orifice is $8.5 \mathrm{~m} / \mathrm{s}$ under a head of 4.6 m . the actual discharge is measured as $10 \mathrm{dm} 3 / \mathrm{s}$.
Determine:
i) The coefficient of velocity Cv
ii) The coefficient of discharge Cd
iii) The coefficient of contraction Cc
b) The head of water over a rectangular notch is 900 m when the discharge is $0.3 \mathrm{~m} 3 / \mathrm{s}$. If $\mathrm{Cd}=0.62$, determine the length of the notch.
(4 marks)
c) With the aid of sketches, differentiate the following:
i) Orifice plate from a flow nozzle
ii) A mouthpiece from a small orifice
(4 marks)

Question Three (20 Marks)

a) Define the following terms:
i) Steady flow
ii) Uniform flow
iii) Laminar flow
b) A rectangular tank 12 m long and 8 m wide contains water to a depth of 4 m . The tank is fitted with an orifice at the bottom whose diameter is 360 mm and has a $\mathrm{Cd}=0.6$. Determine:
i) The time required to completely empty the tank
ii) The time required to drop the water level by 1 m from initial level
iii) The depth to which water falls in 4 minutes
iv) The quantity of water discharged in 4 minutes

Question Four (20 marks)

a) A sluce gate is opened such that the opening is 1.2 m wide and 0.6 m deep. The upstream water level is 1.0 m above the top edge of the opening and the downstream water level is 0.3 m below the top edge of the opening. Assuming $\mathrm{Cd}=0.62$, determine the discharge through the opening.
b) Trapezoidal notch has a base 0.3 m long and sides inclined at 30° to the vertical. The head causing flow is $0.16 \mathrm{~m} . \mathrm{Cd}=0.62$. Calculate the discharge of water over the notch in kg / s.
c) Outline TWO major differences between 'notch' and a 'weir'

Question Five (20 marks)

a)

Figure 1

b) Water discharges from a large tank through two pipes in series as shown in figure. Determine:
(i) All the individual energy losses
(ii) The discharge through the pipe
c) A 200 mm diameter horizontal pipeline AB is 600 m long. The readings of pressure gauges fitted at A and B are $1521 \mathrm{~N} / \mathrm{m}^{2}$ and $931 \mathrm{~N} / \mathrm{m}^{2}$ respectively. If Darcy's $\mathrm{f}=0.01$. Determine the discharge through the channel.
(6 marks)

