THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE (A Constituent College of JKUAT)
(A Centre of Excellence)
Faculty of Engineering \&
Technology
DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
HIGHER DIPLOMA IN BUILDING \& CIVIL ENGINEERING (HDBC 12S)
EBC 3107: THEORY OF STRUCTURES II
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2012
TIME: 2 HOURS

Instructions to Candidates:
You should have the following for this examination

- Answer Booklet

This paper consists of FIVE questions. Answer any THREE questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

Question One

a) For the beam shown in figure 1. Sketch the influence line diagram for;
(i) The reaction at A
(ii) The reaction at B
(iii) The bending moment at E
b) Determine the maximum bending moment at point E in 1(a) when a uniformly distributed load of $50 \mathrm{KN} / \mathrm{m}$ and 6 m long crosses the beam from C to D

10m

Question Two

Using influence lines, determine the maximum bending moment at a point 20 m from the left hand support of the girder shown in figure 2 when the loads move from A to B.
(20 marks)

30 KN

Question Three

Using Macaulay's method, determine the position and magnitude of the maximum deflection for the beam loaded as shown in figure 3 given E as $200 \mathrm{KN} / \mathrm{m}^{2}$ and I as $160 \times 10^{6} \mathrm{~mm}^{4}$.
(20 marks)
C

Question Four

(a) (i) State Mohr's theorem for slope and deflection.
(ii) Using the theorem, derive the expressions for maximum slope and deflection for a simply ℓ
supported beam of span carrying a uniformly distributed load $\mathrm{w} \mathrm{KN} / \mathrm{m}$ along its entire span.
(7 marks)
b) Figure 4 shows a cantilever beam of uniform section. Assuming $E=210 \mathrm{KN} / \mathrm{mm}^{2}$, Use Macaulay's method to determine the maximum slope and deflection on the beam.
(13 marks)

B

Question Five

a) A uniformly distributed live load of $5 \mathrm{KN} / \mathrm{m}$ run of length 10 m moves on a girder of span 25 m . Find the max positive and negative shear force at a section 10 m from the left and also max bending moment.
(7 marks)
10 m
b) A beam of constant cross-section and made of the same material throughout is loaded as shown in figure 7 below. By conjugated beam method, determine the deflection at the centre and at point D .
(13 marks)
r
20KN

