THE MOMBASA POLYTECHNIC UNIVERSITY
 COLLEGE

(A Constituent College of JKUAT)
Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
HIGHER DIPLOMA IN BUILDING \& CIVIL ENGINEERING
EBC 3106: FLUID MECHANICS II
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Calculator

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) from SECTION A and any other TWO questions from SECTION B
Maximum marks for each part of a question are clearly shown
This paper consists of FOUR printed pages

SECTION A (COMPULSORY)

Question 1 (30 marks)

a) A venturimeter with a throat diameter of 100 mm is connected to a 300 mm diameter water pipe. A differential mercury manometer connected to the inlet and throat of the meter reads a deflection of 250 mm . If the coefficient of the meter is 0.95 , determine the discharge in:
(i) $\mathrm{m}^{3} / \mathrm{s}$
(ii) Litres per minute
(11 marks)
b) A non uniform pipe gradually tappers from 20 cm to 10 cm diameter. The average velocity at the 10 cm diameter section is $1230 \mathrm{~cm} / \mathrm{s}$. Determine:
(i) The discharge in the pipe in $\mathrm{m}^{3} / \mathrm{s}$
(ii) The velocity at the 20 m diameter section in cm / s
c) A tank has a circular orifice 50 mm diameter at a depth of 3 m below the constant water level. The jet of water issuing through the orifice is falling down by 540 mm in a horizontal distance of 2420 mm . If the actual discharge is measured as 1080 litres in 2 minutes, Calculate:
(i) Coefficient of discharge
(ii) Coefficient of velocity
(iii) Coefficient of contraction

SECTION B (Answer any TWO questions from this section)

Question 2 (20 marks)

a) A 200 mm diameter orifice plate is installed in a 250 mm diameter pipe carrying water. When the flow is $125 \mathrm{c} / \mathrm{s}$, the mercury differential gauge reads a deflection of 50 mm . Determine the coefficient of the orifice meter
(13 marks)
b) A pitot tube is installed in the centre of an 90 mm diameter pipe. Water rises in the pitot tube upto a height of 300 mm above the centre of the pipe. The coefficient of the pitot tube $\mathrm{c}=1$. Determine the discharge in the pipe, assuming that the mean velocity in the pipe is $2 / 3$ of the central velocity
(7 marks)

Question 3 (20 marks)

a) Define the following terms:
(i) Steady flow
(ii) Uniform flow
(iii) Non uniform flow
b) A rectangular swimming pool 10 m long and 5 m wide contains water to a depth f 6 m . The pool is fitted with an orifice at the bottom whose diameter is 360 mm and has a coefficient of discharge $\mathrm{cd}=0.6$. Determine:
(i) The time required to empty the tank completely through the orifice
(ii) The time required for the water level to fall 3 m
(iii) The depth above the bottom to which the water falls in 6 minutes
(iv) The quantity of water discharged in 6 minutes

Question 4 (20 marks)

a) An orifice 1.5 m square is provided at the side of a tank. The water level on the upstream side is 1 m above the top edge of the orifice and on the downstream side it is 0.5 m below the top edge of the orifice. $\mathrm{Cd}=0.64$. Calculate the discharge through the orifice
b) A trapezoidal notch has a base 0.3 m long and sides inclined at 30° to the vertical. The head causing flow is 0.16 m and the coefficient of the notch 0.62 . calculate the discharge over the notch
c) State ONE effect of the following on flow over weirs
(i) End contraction
(ii) Velocity of approach

Question 5 (20 marks)

a) Water is siphoned out of a tank by means of a bent pipe ABC 24 m long and 25 mm diameter. The end A is below the water surface and 150 mm above bottom of the tank. The length $A B$ is vertical and 9 m long while BC is 15 m long with the discharge end c is 1.5 m below the bottom of the tank. The atmospheric pressure is 10.3 mm of water and the siphon action ceases when the absolute pressure at B is 1.8 m of water. The loss of head due to friction is $0.5 \mathrm{~V}^{2} / 2 \mathrm{~g}$ per metre where $\mathrm{V}=$ Velocity in the pipe.

> 25mm

Figure 1

Determine:
(i) The limiting velocity of water in the pipe
(ii) The depth of water in the tank when the siphon action ceases
b) Two reservoirs having a difference in their water levels of 25 m are connected by a 0.3 m diameter pipe 8000 m long. Assuming darcy's $\mathrm{f}=0.006$, ignoring minor losses, determine:
(i) The velocity in the pipe
(ii) The discharge in the pipe
c) Outline TWO ways in which the discharge between the reservoirs in Q5 can be increased

