

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \&

Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
 HIGHER DIPLOMA IN BUILDING \& CIVIL ENGINEERING (HDBC 12S)

EBC 3106: FLUID MECHANICS I
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: FEBRUARY 2013
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator

This paper consists of FIVE questions. Answer any THREE questions

Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One

a) A circular plate is 1.5 m diameter is immersed in water as shown in figure 1. Determine:
(i) The total pressure on one face of plate
(ii) The position of the centre of pressure

b) Figure 2 shows a curved gate LM which is a quadrant of a circle 3 m radius. If the width of the gate is 1 m , determine:
(i) The total pressure on the gate LM
(ii) The angle that the total pressure makes with the horizontal
(10 marks)
Figure 2

Question Two

a) Water is flowing through a pipe AB having diameters 600 mm and 400 mm at $\mathrm{A} \& \mathrm{~B}$ respectively. The pressure at A is $350 \mathrm{KN} / \mathrm{m}^{2}$ and at B is $100 \mathrm{KN} / \mathrm{m}^{2}$. The rate of flow is $0.06 \mathrm{~m}^{3} / \mathrm{s}$. Determine the difference in datum head at A and B .
b) Make a sketch of a pitot static tube and label all parts.
c) State:
(i) THREE requirements of installation of a pitot tube
(ii) ONE advantage of a pitot static tube over pitot tube

Question Three

a) A venturimeter with an inlet and throat diameters as 300 mm and 150 mm respectively is connected to a vertical pipe in which water flow occurs from bottom to top. The distance between the throat and inlet is 750 mm . The mercury manometer connected to the throat and inlet reads a deflection of 0.22 m . If $\mathrm{Cd}=0.98$, determine the discharge.
b) An orificemeter 150 mm diameter with $\mathrm{cd}=0.64$ is fitted in a 300 mm diameter pipe to measure the rate of flow of oil of specific gravity of 0.9. A differential mercury manometer connected to the meter reads a deflection of 0.5 m . Determine the discharge.
(8 marks)
c) State FOUR assumptions made in deriving Bernoulli's equation.
(4 marks)
d) See queston on h

Question Four

(a) Sketch THREE types of external mouth pieces. marks)
b) Differentiate between:
(i) Small orifice and large orifice
(ii) Small orifice and mouth piece
(8 marks)
c) A large tank is fitted with a small orifice at the bottom which has an area of $930 \mathrm{~mm}^{2}$. The head causing flow is 3 m . The jet issues horizontally and in a horizontal distance of 2.4 m it falls by 0.53 m . The actual discharge is measured as 430 litres in 1 min 40 seconds. Determine:
(i) Cc
(ii) Cr
(iii) Cd
(6 marks)

Question Five

a) A circular tank 1 m diameter in plan contains water up to a depth of 4 m . The tank is fitted at the bottom with an orifice 40 mm diameter with $\mathrm{Cd}=0.6$. Determine:
(i) The time required to completely empty the tank
(ii) The height of water above the bottom after 1 minute
(10 marks)
b) A rectangular orifice 2 m wide and 1 m deep is fitted in the side of a large tank. The water level on the upstream side is 4 m above top edge of orifice and the level downstream is 0.5 m below top edge of orifice. If $\mathrm{Cd}=0.25$, determine the flow:
(10 marks)

