THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
(A Constituent College of JKUAT)
Faculty of Engineering and Technology
DEPARTMENT OF COMPUTER SCIENCE \& INFORMATION TECHNOLOGY
UNIVERSITY EXAMINATION FOR DEGREE IN
BACHELOR OF TECHNOLOGY IN INFORMATION COMMUNICATION TECHNOLOGY (BTech. ICT. 11M)

EIT 4110: DISCRETE STRUCTURES

END OF SEMESTER II EXAMINATION

SERIES: DECEMBER 2011
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

SECTION A (Compulsory)

QUESTION 1 (30 marks)
(a) Explain the essence of learning logics to computer students
(b) Explain the following as used in logic
(i) Proposition
(ii) Truth table
(iii) Universal quantification of $\mathrm{P}(\mathrm{x})$
(iv) Existential quantification of $\mathrm{P}(\mathrm{x})$
(c) Explain using example the following logical operators
(i) Conjunction
(ii) Disjunction
(iii) Negation
(iv) Implication
(d) Express the following sentences into logical statement
"You can not ride the bicycle, if your under 4 feet tall, unless you are older than 8 years old
(e) Find the truth value of \exists $X p(x)$ where $p(x)$ is the statement $x^{2}>10$ and the universe of discourse consists of the positive integers not exceeding 4

SECTION B (Attempt any TWO questions)

QUESTION TWO [20 marks]

(a) Given the following

$$
\begin{aligned}
& \mathrm{A}=\{1,2\} \\
& \mathrm{B}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}
\end{aligned}
$$

Show the Cartesian product of Ax B and Bx A are not equal.
(b) Let A, B and C be sets show that
$\overline{\mathrm{AuBnc}}=(\overline{\mathrm{C} u \mathrm{~B}}) \mathrm{n} \overline{\mathrm{A}} \quad$ are logically equivalent using logical rules.
(c) Let $A=\{0,2,4,6,8\} B=\{0,1,2,3,4\}$
$C=\{0,3,6,9\}$ what are AuBuC and AnBnC
(d) Let $\mathrm{Q}(\mathrm{x}, \mathrm{y})$ denote the statement $\mathrm{x}=\mathrm{y}+3$. Find truth value of the proposition $\mathrm{Q}(1,2)$ and $Q(3,0)$
(e) Let A be set of positive integers greater than ten. Find $\overline{\mathrm{A}}$

QUESTION THREE [20 marks]

(a) Let f_{1} and f_{2} be function from R1 to R2 such that $f_{1}(x)=x^{2}$ and $f_{2}(x)=x-x^{2}$.

Find the function $f_{1}+f_{2}$ and $f_{1} \cdot f_{2}$
(b) Let A and B be non empty set. A function f from A to $\mathrm{B} \mathrm{f}=\mathrm{A} \longrightarrow \mathrm{B}$ as shown below
A
B

Find the following

(i)	The domain of f	[1 mark]
(ii)	The codomain of f	$[1 \mathrm{mark}]$
(iii)	$\mathrm{f}(\mathrm{a})$	$[1 \mathrm{mark}]$
(iv)	The image of c	$[1 \mathrm{mark}]$
(v)	The pre-image of z	$[1 \mathrm{mark}]$
(vi)	The range of function f	$[1 \mathrm{mark}]$
(vii)	The image of the subset	[2 marks]

(c) Explain using examples the following types of function
(i) Injective
(ii) Surjective
(iii) Bijective
(d) Determine the function $f(x)=x^{2}$ from the set of integers to the set of integers is One to One.
[2 marks]

QUESTION FOUR [20 marks]

(a) Explain the following counting principles
(i) Sum Rule
(ii) Product Rule [4 marks]
(b) A student can choose a computer project from one of three lists. The three lists contain 23, 15, and 19 , possible projects respectively. How many possible projects are there to choose from.
[5 marks]
(c) Find the number of license plates that are available if each plate contains a sequence of three letters followed by three digits and a letter.
[5 marks]
(d) Find the number of bit strings of length four that do not have two consecutive ones.

QUESTION FIVE [20 marks]

(a) Find the values of the Boolean' function represented by $f(x, y, z)=(x+y) \bar{z}$
(b) Construct a circuit that produces the circuit below

$$
(x+y+z)(\bar{x} \bar{y} \bar{z})
$$

(c) Construct a state diagram for the finit state machine with state table 1 shown below

Table 1				
State	f		g	
	Input		Input	
	0	1	0	1
$\mathrm{~S}_{0}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$	1	0
$\mathrm{~S}_{1}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{0}$	1	1
$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	0	1
$\mathrm{~S}_{2}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	0	0

(d) Show that the distributive Law below is valid

$$
x(y+z)=x y+x z
$$

[4 marks]

