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SECTION A (COMPULSORY) 

Question One (30 marks)

a) An alternating current I has the following values at equal intervals of 2 milliseconds:
b)

Time (ms) 0 2 4 6 8 10 12
Current (A) 0 3.5 8.2 10.0 7.3 2.0 0

Charge q in millicoulombs is given by 


12

0
idtq

 use Simpson’s rule to determine the approximate
charge in 12ms period. (3 marks)
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c) A dc  circuit  comprises  three  closed  loops,  applying  Kirchhoff’s laws  the  closed  loops  gives  the
following equations for current flow in milliampres: 

12627
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Use the Cramer’s rule to determine the currents 
21 , II
and 

3I
 . (6 marks)

d) Solve simultaneously the system 

yx
dt

dy

yx
dt

dx
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36





 (6 marks)

e) If 

xy
dx

dy 

 where 
2)( oy

 find y(0.1) with h = 0.1 using the 4th order Runge-Kutta method correct
to 4 d.p (7 marks)

f) Determine  whether  the  solutions  of  the  differential  equation  

065
2

2

 y
dx

dy

dx

yd

are  linearly

independent in the internal 
 x0

(5 marks)

g) Find 
)(21 tfLL
 given that 

1232 2
21  DDLDL

 and 

3)( ttf 
(3 marks)

SECTION B (Answer any TWO questions from this section) 

Question Two (20 marks)

a) Evaluate  

dx
x 

1

0 1

1

 correct  to  4 significant  figures  using Gauss-Legendre 3-  point  formula  on an
interval (-1, 1) (6 marks)

b) Given the first order differential equation 

yx
dx

dy 

subject to the condition y(o) = 1, h = 0.1, solve

the differential using modified Euler method if 
3.00  x

 correct to 4 significant figures.
(8 marks)

c) Using trapezoidal rule evaluate 
 2

0
sin



xdx

 given that the interval is divided into 10 equal parts.
(6 marks)

Question Three (20 marks)
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a) Use  Romberg  method  to  computer  the  

 
1

0 1 x

dx

 correct  to  3  d.p  given  that  for  h  =  0.5,

6970.0,7084.0)( 






z

h
IhI

 and 

6941.0
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 h

I

(5 marks)

b)  By Taylor’s series for 
),(xy

 find y(0.1) correct to 4 d.p if 
)(xy
satisfies 

2' yxy 
 and 

1)( oy
 

(7 marks)
c) Using the operator method to solve simultaneously the system 
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yx
dt

dy

dt

dx

tx
dt

dy

dt

dx

(8 marks)

Question Four (20 marks) 

a) If  

xy
dx

dy 

 where  
2)0( y

 find y(0.1) then y(0.2) with h(0.1) using the 2nd order Runge-Kutta
method correct to 4d.p (5 marks)

b) Apply the  gauss  quadrature  formula  to  compute  the  integral  


12

5 x

dx
I

 choosing n = 3  over  the
interval (-1,1) (6 marks)

c) Using matrix method solve the system:

321

321
2

321
1
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xxx
dt

dx

xxx
dt

dx

xxx
dt

dx







( 9 marks)

Question Five (20 marks)

a) Use the Euler’s method to find an approximation to the initial value problem 
y

x
y

dx

dy 2

if y(0) = 1

in the range 
2.00  x

with the step size h = 0.1 (6 marks)

b) A particle moves along a path such that at a time t its distance S from a fixed point on the path is given

by 

  2
1

38 tt
dt

ds 
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Use  Simpson’s  
3

1

rule  to  calculate  the  approximate  distance  travelled  by  the  particle  from  time

sec8.0t
 to 

sec6.1t
using 8 stips. (working correct to 3 d.p) (6 marks)

c) Evaluate the determinant of 

 
 




















50

41

312

i

ii

ii

 using the 1st column where I is a complex number.
(4 marks)

d) Use the 2 point, Gause-legendre rule to approximate 

 
1

1 2x

dx

(4 marks)
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