

# TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health 

## Sciences

# DEPARTMENT OF MATHEMATICS \& PHYSICS <br> UNIVERSITY EXAMINATION FOR DEGREE IN BACHELOR OF SC. IN MECHANICAL \& AUTOMOTIVE ENGINEERING 

## EMG 2414: NUMERICAL METHODS FOR ENGINEERS

## SPECIAL/SUPPLEMENTARY EXAMINATION <br> SERIES: OCTOBER 2013 <br> TIME: 2 HOURS

## Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

## SECTION A (COMPULSORY)

Question One (30 marks)
a) An alternating current $I$ has the following values at equal intervals of 2 milliseconds:
b)

| Time (ms) | 0 | 2 | 4 | 6 | 8 | 10 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Current (A) | 0 | 3.5 | 8.2 | 10.0 | 7.3 | 2.0 | 0 |

$q=\int_{0}^{12} i d t$
Charge q in millicoulombs is given by charge in 12 ms period.
use Simpson's rule to determine the approximate
(3 marks)
c) A dc circuit comprises three closed loops, applying Kirchhoff's laws the closed loops gives the following equations for current flow in milliampres:

$$
\begin{aligned}
& 2 I_{1}+3 I_{2}-4 I_{3}=26 \\
& I_{1}-5 I_{2}-3 I_{3}=-87 \\
& -7 I+2 I_{2}+6 I_{3}=12
\end{aligned}
$$

$$
I_{1}, I_{2} \quad I_{3}
$$

Use the Cramer's rule to determine the currents and .
(6 marks)
d) Solve simultaneously the system

$$
\begin{aligned}
& \frac{d x}{d t}=6 x-3 y \\
& \frac{d y}{d t}=2 x+2 y \\
& \frac{d y}{d x}=y-x \quad y(o)=2
\end{aligned}
$$

e) If where find $y(0.1)$ with $h=0.1$ using the $4^{\text {th }}$ order Runge-Kutta method correct to 4 d.p

$$
\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=0
$$

f) Determine whether the solutions of the differential equation
are linearly independent in the internal
(5 marks)
$L_{1} L_{2} f(t) \quad L_{1}=2 D+3 \quad L_{2}=D^{2}+2 D+1 \quad f(t)=t^{3}$
g) Find given that and

## SECTION B (Answer any TWO questions from this section)

## Question Two (20 marks)

$$
\int_{0}^{1} \frac{1}{1+x} d x
$$

a) Evaluate correct to 4 significant figures using Gauss-Legendre 3- point formula on an interval (-1, 1)
(6 marks)

$$
\frac{d y}{d x}=x-y
$$

b) Given the first order differential equation subject to the condition $\mathrm{y}(\mathrm{o})=1, \mathrm{~h}=0.1$, solve $0 \leq x \leq 0.3$
the differential using modified Euler method if correct to 4 significant figures.
(8 marks)

$$
\int_{0}^{\pi / 2} \sin x d x
$$

c) Using trapezoidal rule evaluate given that the interval is divided into 10 equal parts.

## Question Three (20 marks)

a) Use Romberg method to computer the
correct to 3 d.p given that for $h=0.5$,

$$
I(h)=0.7084, I\left(\frac{h}{z}\right)=0.6970 \quad I\left(\frac{h}{4}\right)=0.6941
$$

(5 marks)
$y(x), \quad y(x) \quad y^{\prime}=x-y^{2} \quad y(o)=1$
b) By Taylor's series for find $\mathrm{y}(0.1)$ correct to $4 \mathrm{~d} . \mathrm{p}$ if satisfies and
(7 marks)
c) Using the operator method to solve simultaneously the system

$$
\begin{aligned}
& 2 \frac{d x}{d t}-2 \frac{d y}{d t}-3 x=t \\
& 2 \frac{d x}{d t}+2 \frac{d y}{d t}+3 x+8 y=2
\end{aligned}
$$

(8 marks)

## Question Four (20 marks)

$$
\frac{d y}{d x}=y-x \quad y(0)=2
$$

a) If where find $\mathrm{y}(0.1)$ then $\mathrm{y}(0.2)$ with $\mathrm{h}(0.1)$ using the $2^{\text {nd }}$ order Runge-Kutta method correct to 4d.p

$$
I=\int_{5}^{12} \frac{d x}{x}
$$

b) Apply the gauss quadrature formula to compute the integral
choosing $\mathrm{n}=3$ over the
( 6 marks)
c) Using matrix method solve the system:

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=3 x_{1}+x_{2}-x_{3} \\
& \frac{d x_{2}}{d t}=x_{1}+3 x_{2}-x_{3} \\
& \frac{d x 3}{d t}=3 x_{1}+3 x_{2}-x_{3}
\end{aligned}
$$

( 9 marks)

## Question Five (20 marks)

$$
\frac{d y}{d x}=y-\frac{2 x}{y}
$$

a) Use the Euler's method to find an approximation to the initial value problem

$$
\text { if } y(0)=1
$$

$$
0 \leq x \leq 0.2
$$

in the range with the step size $\mathrm{h}=0.1$

## (6 marks)

b) A particle moves along a path such that at a time $t$ its distance $S$ from a fixed point on the path is given

$$
\frac{d s}{d t}=t\left(8-t^{3}\right)^{1 / 2}
$$

by

Use Simpson's rule to calculate the approximate distance travelled by the particle from time $t=0.8 \mathrm{sec} \quad t=1.6 \mathrm{sec}$

$$
\text { to } \quad \text { using } 8 \text { stips. (working correct to } 3 \mathrm{~d} . \mathrm{p} \text { ) }
$$

$\left[\begin{array}{ccc}i^{2} & (1+i) & 3 \\ (1-i) & 4 & i \\ 0 & i & 5\end{array}\right]$
c) Evaluate the determinant of using the 1st column where I is a complex number.

$$
\int_{-1}^{1} \frac{d x}{x+2}
$$

d) Use the 2 point, Gause-legendre rule to approximate

