

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)

Faculty of Engineering & Technology

DEPARTMENT OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY CERTIFICATE IN INFORMATION TECHNOLOGY (CIT/JAN 2012/S-EV)

EIT 1113: FUNDAMENTALS OF MATHEMATICS

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: MAY/JUNE 2012 TIME: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet This paper consist of FIVE questions Answer any THREE questions. Question ONE is Compulsory Maximum marks for each part of a question are as shown This paper consists of THREE printed pages

SECTION A (20 marks)

Question One (20 Marks)

a) Solve the following equations: 4x + 3y = 120	
5x + 6y = 150	
i.	(4 marks)
$2x^2 + 6x + 8 = 0$	
b) Evaluate the following:	(3 marks)
b) Evaluate the following: ${}^{4}P_{2} * {}^{6}C_{2}$	
i.	(3 marks)
${}^{5}P_{2} * {}^{5}C_{3}$	()
ii.	(3 marks)
c) If $(2a - b)^{20}$ is expanded in ascending powers of b find:	
i. The 1 st five terms of the series	(4 marks)
ii. The 7^{th} term of the powers of 2a	(3 marks)

SECTION B (Answer any TWO questions – 40 Marks)

Question Two (20 marks)

-5	10	8	-1	2	4	
M = 4	-7	-6	N = 2	1	-2	
-3	6	5	-3	0	5	
K			and matrix			

a)	Show that if matrix	and matrix	
	The MN = NM = 1 where I is the $3*3$	unit matrix	(16 marks)

b) Using matrix N above determine its determinant

Question Three (20 marks)

The masses of students in a CIT class are given below:

Mass in Kg	f	
40 - 49	1	
50 - 59	3	
60 - 69	17	
70 – 79	14	
80 - 89	9	
90 - 99	6	
i. Calculate the	mean	(6 marks)

(4 marks)

ii. iii.	Calculate the variance Determine the standard deviation	(8 marks) (6 marks)
Ques	stion Four (20 marks)	
a) S	olve the following equation	
1	$\frac{2}{x+3x} - \frac{1}{2-x} = \frac{3}{7}$	(7 marks)
b) C	Convert the following numbers to the indicated bases:	
	 i. 20BE₁₆ to decimal ii. 764₈ to binary 	
	iii. 956_{10} to hexadecimal	(9 marks)
c) E	Express the number 2398 to denary	(3 marks)