TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology DEPARTMENT OF MECHANICAL \& AUTOMOTIVE ENGINEERING UNIVERSITY EXAMINATION 2013/2014

FIFTH YEAR SECOND SEMESTER UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

EMG 2523 : MECHANICS OF METAL CUTTING
TIME: 2 HOURS
SERIES: DECEMBER, 2013

INSTRUCTIONS TO CANDIDATES

1. You are required to have the following for these examinations:

- Drawing Instruments
- Scientific Calculator

2. This paper has FIVE Questions.
3. Answer ANY THREE Questions.
4. All Questions carry EQUAL marks.
5. This paper consists of FOUR Printed pages.

QUESTION 1

(a) Working from first principles establishes the optimum cutting speed V_{T}, where the total cost of machining the batch is a minimum.
(12 marks)
(b) In a certain machining operation on a components, $\mathrm{n}=0.25, \mathrm{C}=183$, tool change time $=$ 8 min , tool regrind time $=6$ minutes, machine running cost $=\mathrm{Sh} .200$ per hour; deprecation of tool per regrind $=$ Sh.12. Calculate the optimum cutting speed.
(3 marks)
(c) If 3000 components are required with a machined length of 125 mm at 65 mm diameter using a feed of $0.2 \mathrm{~mm} /$ revolution, calculate the time required to machine the batch of 3,000 , and the total $\operatorname{cost} \mathrm{Y}_{\mathrm{T}}$.
(5 marks)

QUESTION 2

In an orthogonal cutting set up, the depth of cut was 10 mm , feed $=1 \mathrm{~mm} /$ rev, cutting speed $=60$ m.p.m, bac, rake angle $=10^{\circ}$, chip thickness ratio $=0.33$, shear stress of material at zero compressive stress $=1000 \mathrm{~kg} / \mathrm{sq}-\mathrm{cm}$. Assume that value of constant k in equation $2 \phi+\beta-\alpha=\cot ^{-1} k$ is 0.2 . Calculate the resultant force, rate of metal removal, shear strain, h.p at the tool per cubic cm of metal removal per minute. Take $\psi=\psi_{o} /\{1-k \tan (\phi+\beta-\alpha)\}$
(20 marks)

QUESTION 3

(a) Discuss vibration and chatter on machine tools.
(2 marks)
(b) In a machining operation the cutting force Fc is related to the depth of cut (d) and feed (f) by the expression:

$$
F_{c}=1950 d^{0.84} f^{0.6}
$$

A lathe under such conditions consumes 5.5 kW on a workpiece of diameter 150 mm , depth of cut 4.5 mm and feed $0.41 \mathrm{~mm} / \mathrm{rev}$. Determine the maximum spindle speed (R.P.M).
(6 marks)
(c) In an orthogonal cutting process, the cutting velocity was 12.2 mpm and FNs is 1100 N . If the rake angle was 12.5°, chip thickness ratio $=0.4$ and the coefficient of friction was 1.16 , determine the motor horsepower if the efficiency is 0.85 .
(6 marks)
(d) An end will cutter of diameter 120 mm is to face mill a workpiece 90 mm wide. The optimum power available is 6 kw , depth of cut is 4.5 mm , cutting speed $=20 \mathrm{mpm}$ and the cutter has 20 teeth. If the material removal rate (k) is $21,000 \mathrm{~mm}^{3} /(\min . \mathrm{kW})$, determine the feed rate per tooth.
(6 marks)

QUESTION 4

(a) The power to cut a material under certain conditions is $2.1 \mathrm{~W} / \mathrm{mm}^{3} / \mathrm{S}$. A cut 6 mm deep x $0.23 \mathrm{~mm} / \mathrm{rev}$ feed is taken at $22.5 \mathrm{~m} / \mathrm{min}$ and the work is cooled by a flow of 2.5 litres of coolant per minute, of specific gravity 0.92 and specific gravity 0.92 and specific heat capacity $3.5 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$. This coolant conducts away 90% of the heat. Determine the rise in temperature of the coolant.
(b) Discuss briefly the following cutting fluids:
(i) Solid lubricants
(ii) Emulsions
(iii) Chemical solutions
(iv) Straight fatty oils
(v) Aqueous solution
(10 marks)
(c) (i) Describe, tool:
$\begin{array}{ll}\text { (I) } & \text { Face wear } \\ \text { (II) } & \text { Flank wear }\end{array}$
(ii) Explain how flank wear determines too life.
(6 marks)

QUESTION 5

(a) With the aid of a sketch describe the principle of the cutting tool dynamometer.

marks)

(b) In an orthogonal cutting experiment the cutting force was 195 N , feed force 130 N , rake angle 20° and chip thickness ratio 0.35 . If the cutting speed was $26 \mathrm{~m} . \mathrm{pm}$, determine the friction work at the tool rake face.
(7 marks)
(c) Define the following terms:
(i) Errors of form
(ii) Roughness
(iii) Waviness
(d) Figure 1 shows the area trace in a roughness test with the attendant magnification. Calculate Ra value for the surface in micrometers.

