

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT) (A Centre of Excellence)

Faculty of Engineering &

Technology

DEPARTMENT OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

DIPLOMA IN INFORMATION & COMMUNICATION TECHNOLOGY (DICT 2K 10J)

EIT 2313: QUANTITATIVE TECHNIQUE II

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: OCTOBER 2012 TIME: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet - Calculator and SMP Tables can be used

This paper consist of **FIVE** questions

Question One (30 marks)

a) b)	 (i) Describe the term "Decision tree" as applied in decision theory. (ii) Explain TWO types of simulation. With the aid of a diagram, describe the following terms as used in network analysis. 	(6 marks)		
	i) Dangling			
	II) Looping	(4 marks)		
c)	Explain the term dummy activity as applied in network diagrams.	(2 marks)		
d)	1) List the steps involved in formulating a linear programming problem using the simplex method			
,		(4 marks)		
e)	State any FOUR assumptions made in linear programming.	(2 marks)		
f)	Define the term simulation.	(2 marks)		
<u>SE</u>	CTION B (Answer Any Two Questions)			
Qu	estion Two (20 marks)			
a)	Define the term linear programming.	(2 marks)		

- **b)** Explain the components of linear programming model.
- c) A firm produces three products X, Y and Z with a contribution of ksh. 20, 18 and 16 respectively, production data are as follows:

	Machine Hours	Labour Hours	Material
X	5	2	8
Y	3	5	10
Ζ	6	3	3
Availability	3000	2500	10,000

- (i) Set up the initial simplex tableau including the slack variables.
- (ii) Use the simplex method to set up content of the second table.

Question Three (20 marks)

- a) (i) Define a pay-off table as used in decision theory.
 - (ii) Distinguish between types of nodes found in decision trees.
- b) Susan, a business lady would like to borrow shs. 300,000 from a bank in order to finance a project. The money to be repaid within one year. The bank charges a 16% p.a. Simple interest. The bank may grant the loan or invest the same amount and be guaranteed a return of 10% p.a. From past experience at the bank 5% of clients granted loans default on repayment.
 - (i) Using this information, construct a pay off table for the bank. (5 marks) (ii) Draw a decision tree to represent this information. (5 marks)
 - (iii) Determine the best decision for the bank.

(4 marks)

(14 marks)

(4 marks)

(6 marks)

Question Four (20 marks)

- a) Define the following with respect to network analysis.
 - i) Event
 - ii) Network
- b) State THREE characteristics of the critical path method.
- c) A project had activities shown below:

Activity	Durations in Weeks	Preceding Activity	Std. Deviation of time
А	5	-	1.5
В	6	-	2
С	7	А	2.5
D	4	А	1
Е	2	A,B	0.5
F	4	C,D,E	1.5
G	10	D,E	3
Н	3	F,G	1.5

- (i) Draw the network and mark the critical path.
- (ii) Calculate the probability that the project will last for more than 26 weeks. (7 marks)

Question Five (20 marks)

- a) State TWO advantages and disadvantages of simulation.
- b) State THREE areas where simulation can be applied.
- c) During the Jamuhuri Day celebrations, a human rights organization decided to interview 100 people to get their opinion on the dressing mode for ladies. The organization chose a strategic place where they could interview the people as the arrived for the occasion. The table below shows the arrival pattern of the people.

Time Between Arrivals	0	1	2	3	4	5
Probability	0.2	0.3	0.1	0.10	0.08	0.04
	5	5	8			

The interview time had the following distribution.

Interview time (min)	2	4	6
Probability	0.40	0.45	0.15

- i) Allocate random numbers ranges to the following:
 - Time between arrivals -
 - Interview time

- (5 marks)
- ii) Using the following random numbers arrival pattern, simulate the problem and find the average time between arrivals.

(8 marks)

(4 marks) (3 marks)

(6 marks)

(3 marks)