

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology DEPARTMENT OF MECHANICAL & AUTOMOTIVE ENGINEERING

UNIVERSITY EXAMINATION 2013/2014

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

(FOURTH YEAR SECOND SEMESTER)

(FIFTH YEAR SECOND SEMESTER)

EMG 2505 MEASUREMENT AND INSTRUMENTATION

TIME: 2 HOURS SERIES: DECEMBER, 2013

INSTRUCTIONS TO CANDIDATES

- 1. You are required to have the following for these examinations:
 - Answer Booklet
 - Non-programmable Calculator
- 2. This paper has **FIVE** Questions.
- 3. Answer Question **ONE** and any other **TWO** Questions.
- 4. This paper consists of FIVE *Printed pages*.

Question ONE (Compulsory)

- Explain the meaning of the terms as used in measurement systems: (a)
 - (i) Active instrument
 - (ii) Null type instrument

(4 marks)

(b) Explain with the aid of a block diagram the elements of a measuring instrument.

(6 marks)

- (c) Define the following terms with respect to measurement: (i) Working standards (ii) Primary standards (4 marks) (d) The expected value of the voltage to be measured is 150V. However, the measurements gives a value of 149V. Calculate: (i) Absolute error (ii) Percentage error Relative error (iii) (iv) percentage accuracy Error expressed as percentage of full scale reading. If the scale range is 0-200V (v) (5 marks) Two quantities x_1 and x_2 have errors of $\pm \delta x_1$ and $\pm \delta x_2$ respectively. Derive the (e) expression for the error in x when: $x = x_1 x_2$ (i) $x = x_1 / x_2$ (ii) (5 marks) (f) Show that the gauge factor of a strain gauge can be written as: $G_f = 1 + 2v + \frac{\Delta \rho / \rho}{\Delta L / L}$ (6 marks) **Question TWO** Define the terms as used in measurements: (a) (i) Accuracy (ii) Resolution (iii) **Fidelity** (3 marks)
- (b) The dead zone in a certain pyrometer is 0.125% of span. The calibration is 400°C. What temperature change might occur before it is detected? (2 marks)
- (c) A measuring instrument consists of a mass-spring system with the following parameters:

Stiffness = k N/m

Mass = mkg

Damping coefficient = kd Ns/m

For a force input, F(t) and an output movement x(t):

- (i) Derive the characteristic equation of the system
- (ii) Identify the order

(5 marks)

(d) Differentiate between Gross errors and Random errors.

(4 marks)

(e) The output power of a rotating shaft is measured a dynamometers.

The relationship for output power is:

$$P = \frac{2\pi \times 9.81 FLR}{t \times 10^6} kW$$

The test data are:

$$F = 4.58 \pm 0.02 kg$$

 $L = 397 \pm 1.3 mm$

$$R = 1202 \pm 1.0$$
 revolution, $t = 60 \pm 0.50$ sec

Determine the magnitude of the error in the computed power.

(6 marks)

Question THREE

(a) State **THREE** advantages of electrical transducers.

(3 marks)

- (b) Explain with the aid of a diagram, the different between a primary and secondary transducer.
- (c) State **TWO** advantages and disadvantages of thermistors.

(2 marks)

- (d) A platinum thermometers has a resistance of 100Ω at 35° C.
 - (i) Find its resistance at 75°C if the platinum has a resistance temperature coefficient of 0.004/°C.
 - (ii) If the thermometer has a resistance of 150Ω . Calculate the temperature.

(4 marks)

(e) Explain with the aid of a diagram, the operation of a LVDT. (5 marks)

Question FOUR

- (a) Define the following terms:
 - (i) Johnson noise
 - (ii) Shot noise

(4 marks)

- (b) At the input an amplifier has a signal voltage level of $3\mu V$ and a noise voltage level of $1\mu V$.
 - (i) Calculate the signal to noise ratio at the input.
 - (ii) If the voltage gain of the amplifier is 20, calculate the S/N ratio at the output.
 - (iii) If the amplifier adds 5Mv of noise, determine the S/N ratio at the output.

(6 marks)

(c) State **THREE** properties of an ideal operational amplifier.

(3 marks)

(d) For a high pass filter, show that the transfer function:

$$\frac{E_o}{E_i}(s) = \frac{SRC}{1 + SRC}$$

(3 marks)

- (e) An inverting OPAMP has a resistance of $100k\Omega$ in its feedback path and a resistance of $1k\Omega$ at its input terminals.
 - (i) Calculate the gain
 - (ii) If an operational amplifier is to be built with its input resistance $10k\Omega$, what should be the value of feedback resistance if it acts as a multiplier with a factor of 10.

(4 marks)

Question FIVE

(a) State **ONE** advantage and **ONE** limitation of LCD displays.

(2 marks)

- (b) With the aid of a diagram, explain the operation of an LCD display. (4 marks)
- (c) The coil of a recording ammeter is 6.5cm long and 2.5cm wide. The rated current of the coil is 10mA. The flux density in the air gap is 4.6 x 10⁻³wb/m². The damping constant is 8 x 10⁻³Nm/rad-s⁻¹. The moment of inertia is 8 x 10⁻³kgm². The spring constant is 16 x 10⁻³Nm/rad. The coulomb friction is 0.2 x 10⁻⁶Nm. Determine, for 100° deflection at rated current:
 - (i) The number of turns on the coil.
 - (ii) The current required to overcome Coulomb friction.

(6 marks)

- (d) State **THREE** advantages of using microprocessors in measurement systems. (3 marks)
- (e) With the aid of a sketch explain the main elements of a Cathode Ray Oscilloscope (C.R.O) tube. (5 marks)