TECHNICAL UNIVERSITY OF MOMBASA
Faculty of Engineering and Technology DEPARTMENT OF MECHANICAL \& AUTOMOTIVE ENGINEERING UNIVERSITY EXAMINATION 2013/2014

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING
(FOURTH YEAR SECOND SEMESTER)
(FIFTH YEAR SECOND SEMESTER)

EMG 2505
 : MEASUREMENT AND INSTRUMENTATION

TIME: 2 HOURS
SERIES: DECEMBER, 2013

INSTRUCTIONS TO CANDIDATES

1. You are required to have the following for these examinations:

- Answer Booklet
- Non-programmable Calculator

2. This paper has FIVE Questions.
3. Answer Question ONE and any other TWO Questions.
4. This paper consists of FIVE Printed pages.

Question ONE (Compulsory)
(a) Explain the meaning of the terms as used in measurement systems:
(i) Active instrument
(ii) Null type instrument
(4 marks)
(b) Explain with the aid of a block diagram the elements of a measuring instrument.
(6 marks)
(c) Define the following terms with respect to measurement:
(i) Working standards
(ii) Primary standards
(4 marks)
(d) The expected value of the voltage to be measured is 150 V . However, the measurements gives a value of 149 V . Calculate:
(i) Absolute error
(ii) Percentage error
(iii) Relative error
(iv) percentage accuracy
(v) Error expressed as percentage of full scale reading. If the scale range is $0-200 \mathrm{~V}$
(5 marks)
(e) Two quantities x_{1} and x_{2} have errors of $\pm \delta x_{1}$ and $\pm \delta x_{2}$ respectively. Derive the expression for the error in x when:
(i)
(ii) $x=x_{1} / x_{2}$
(f) Show that the gauge factor of a strain gauge can be written as:
$G_{f}=1+2 v+\frac{\Delta \rho / \rho}{\Delta L / L}$
(6 marks)

Question TWO

(a) Define the terms as used in measurements:
(i) Accuracy
(ii) Resolution
(iii) Fidelity
(b) The dead zone in a certain pyrometer is 0.125% of span. The calibration is $400^{\circ} \mathrm{C}$. What temperature change might occur before it is detected?
(2 marks)
(c) A measuring instrument consists of a mass-spring system with the following parameters:

Stiffness $=\mathrm{kN} / \mathrm{m}$
Mass $=\mathrm{mkg}$
Damping coefficient $=\mathrm{kd} \mathrm{Ns} / \mathrm{m}$
For a force input, $\mathrm{F}(\mathrm{t})$ and an output movement $\mathrm{x}(\mathrm{t})$:
(i) Derive the characteristic equation of the system
(ii) Identify the order
(d) Differentiate between Gross errors and Random errors.
(e) The output power of a rotating shaft is measured a dynamometers.

The relationship for output power is:
$P=\frac{2 \pi \times 9.81 F L R}{t \times 10^{6}} k W$

The test data are:
$F=4.58 \pm 0.02 \mathrm{~kg}, \quad L=397 \pm 1.3 \mathrm{~mm}$
$R=1202 \pm 1.0$ revolution, $t=60 \pm 0.50 \mathrm{sec}$

Determine the magnitude of the error in the computed power.
(6 marks)

Question THREE

(a) State THREE advantages of electrical transducers.
(b) Explain with the aid of a diagram, the different between a primary and secondary transducer.
(c) State TWO advantages and disadvantages of thermistors.
(2 marks)
(d) A platinum thermometers has a resistance of 100Ω at $35^{\circ} \mathrm{C}$.
(i) Find its resistance at $75^{\circ} \mathrm{C}$ if the platinum has a resistance temperature coefficient of $0.004 /{ }^{\circ} \mathrm{C}$.
(ii) If the thermometer has a resistance of 150Ω. Calculate the temperature.
(e) Explain with the aid of a diagram, the operation of a LVDT.
(5 marks)

Question FOUR

(a) Define the following terms:
(i) Johnson noise
(ii) Shot noise
(b) At the input an amplifier has a signal voltage level of $3 \mu \mathrm{~V}$ and a noise voltage level of $1 \mu \mathrm{~V}$.
(i) Calculate the signal to noise ratio at the input.
(ii) If the voltage gain of the amplifier is 20 , calculate the S / N ratio at the output.
(iii) If the amplifier adds 5 Mv of noise, determine the S / N ratio at the output.
(c) State THREE properties of an ideal operational amplifier.
(d) For a high pass filter, show that the transfer function:

$$
\frac{E_{o}}{E_{i}}(s)=\frac{S R C}{1+S R C}
$$

(e) An inverting OPAMP has a resistance of $100 \mathrm{k} \Omega$ in its feedback path and a resistance of $1 \mathrm{k} \Omega$ at its input terminals.
(i) Calculate the gain
(ii) If an operational amplifier is to be built with its input resistance $10 \mathrm{k} \Omega$, what should be the value of feedback resistance if it acts as a multiplier with a factor of 10.

Question FIVE

(a) State ONE advantage and ONE limitation of LCD displays.
(b) With the aid of a diagram, explain the operation of an LCD display. (4 marks)
(c) The coil of a recording ammeter is 6.5 cm long and 2.5 cm wide. The rated current of the coil is 10 mA . The flux density in the air gap is $4.6 \times 10^{-3} \mathrm{wb} / \mathrm{m}^{2}$. The damping constant is $8 \times 10^{-3} \mathrm{Nm} / \mathrm{rad}^{-1} \mathrm{~s}^{-1}$. The moment of inertia is $8 \times 10^{-3} \mathrm{kgm}^{2}$. The spring constant is 16 x $10^{-3} \mathrm{Nm} / \mathrm{rad}$. The coulomb friction is $0.2 \times 10^{-6} \mathrm{Nm}$. Determine, for 100° deflection at rated current:
(i) The number of turns on the coil.
(ii) The current required to overcome Coulomb friction.
(d) State THREE advantages of using microprocessors in measurement systems. (3 marks)
(e) With the aid of a sketch explain the main elements of a Cathode Ray Oscilloscope (C.R.O) tube.
(5 marks)

