

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE (A CONSTITUENT COLLEGE OF JKUAT) *Faculty of Engineering and Technology*

DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING Bachelor of Science in Mechanical Engineering

EMG 2302 : THERMODYNAMIC II

Year 3 Semester 1 Examinations

SPECIAL/SUPPLEMENTARY EXAMS

SERIES: March 2012

TIME: 2 Hours

INSTRUCTIONS TO CANDIDATES,

You should have the following for this examination

- Answer booklet

Scientific calculator This paper consists of **FIVE** questions Answer **ANY THREE** questions Maximum marks for each question are shown. This paper consists of **THREE** Printed pages.

Question One

Explain the following terms

- i. Available Energy
- ii. Unavailable Energy

(4marks)

- b) Derive the equation for the decrease in available energy when heat is transferred through a finite temperature different. (9 marks)
- c) A system at 500K receives 7200kJ/min from a source at 1000K. The temperature of the atmosphere IS 300K. Assuming that the temperatures of the system and source remain constant during heat transfer. Calculate

i. The entropy produced during heat transfer

ii. Decrease in available energy after heat transfer.

Ouestion Two

- a) Define the following terms
 - Mole fraction i.
 - ii. Partial pressure.
- b) Explain Gibbs-Dalton Law
- c) The pressure and temperature of 4 Kg of O_2 and 6 Kg of N_2 are 4 bar and 27°C respectively. For the mixture determine the following.
 - i. The mole fraction of each component
 - ii. The average molecular weight
 - The specific gas constant iii.
 - The volume and density iv.
 - The partial pressures and partial volumes. V.

Ouestion Three

- a) Define the following terms
 - Dry air i.
 - ii. Saturated air
 - iii. Wet-bulb temperature
 - Drv- bulb temperature iv.

	J 1	
b)	Explain the adiabatic saturation process.	(6 marks)

- c) A Tank contains 10 kg of dry air and 0.1 kg of water vapour at 30°C and total pressure of 100kPa.Calculate the following
 - Specific humidity i.
 - ii. **Relative humidity**
 - The volume of the tank. iii

Question Four

a) Describe a regenerative cycle with a single feed water heater and show it's efficiency

(12 marks)

- b) In a regenerative cycle, having one feed water heater, the dry saturated steam is supplied from the boiler at a pressure of 30 bar and the condenser pressure is 1 bar, the steam is bled t a pressure of 5 bar .calculate
 - i The amount of bled steam per Kg of steam supplied and the efficiency of the cvcle.
 - The efficiency without regenerative feed heating. (8 marks)

Question Five

(7 marks)

(4 marks)

(9 marks)

(6 marks)

(8 marks)

a) Explain the various operations of Rankine cycle and derive it's efficiency.

(10 marks)

- b) In Rankine cycle, the steam at inlet to turbine is saturated at a pressure of 35 bar and the exhaust pressure is 0.2 bar. Calculate
 - i. The pump
 - ii. Turbine work
 - iii. Rankine efficiency
 - iv. Condenser heat flow
 - v. The dryness at the of expansion.

(10 marks)