

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology DEPARTMENT OF MEDICAL ENGINEERING

DIPLOMA IN MEDICAL ENGINEERING (DME 213 Y2 S2)

EHL 2204 DIGITAL ELECTRONICS

SPECIAL/SUPPLEMENTARY EXAMINATIONS SERIES: JULY, 2014 TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

-Answer any THREE questions

-You are required to carry a scientific calculator for this paper. This paper consists of **3 PRINTED** pages

QUESTION ONE

(a)	(i)	Convert the decimal number 23 to Binary.	(4 marks)
	(ii)	Perform $(1-3)_{10}$ by I's complement	(4 marks)
<u>(b)</u>	_(i)	Define the term <u>decoder</u>	
	(ii)	Design a Binary-to-octal decoder and implement it using gates.	(10 marks)
Conv	vert the	e decimal number 17 to exces-3 BCD	(2 marks)
QUI	ESTIO	N TWO	
(i)	Conve	ert the decimal number 17 to octal.	(3 marks)
	(ii)	$\begin{array}{c} (7-9)_{10} \\ \text{Perform} \\ \text{by 2's complement} \end{array}$	(8 marks)
(b)	Illustr a JK f	rate using a schematic diagram and truth table how a RS catch can be co lip flap.	onverted into (6 marks)
Find	the mi	$F = AB + \overline{B}C\overline{D}$ nterms of	(6 marks)
QUI	ESTIO	N THREE	
(a)	(i)	Convert 27_{10} to Hexadecimal	(3
	mark	s)	
	(ii)	Explain, giving TWO reasons, why BCD is not used in digital comput	ers. (4 marks)
(b)	(i)	Design a FULL adder circuit and implement it using the minimum num	nber of gates. (12 arks)
	(ii)	Define the term conjunctive normal form as used in Boolean equations	s. (1 marks)

QUESTION FOUR

(b)

(3 marks)	Convert $9B4_{16}$ into decimal	(a) (i)
(4 marks)	Add $275_{10} + 241_{10}$ using the 8421 BCD	(ii)
(10 marks)	$F = A + B\overline{C}$ he max-term of	(i) Find
(3 marks)	$(2345 - 6879)_{10}$ Perform by 10s complement	(ii)
	N FIVE	QUESTI
(3 marks)	Convert 124.358 into hexadecimal.	(a) (i)
(3 marks)	Convert 101 ₁₀ to Cray code	(ii)

(b) Sensor D is a daytime sensor while sensor E is the timetable sensor for digital electronics lessons. DME 213 class occupies lab 6 or med 5 for electronic lessons. Sensors L and M detect their presence in Lab 6 and in Med 5 respectively.

Design a logic circuit which will round an alarm whenever the students are absent and light lamps they are present at right. Implement the circuit. (14 marks)