

Faculty of Engineering and Technology DEPARTMENT OF MEDICAL ENGINEERING

DIPLOMA IN MEDICAL ENGINEERING (DME 213 Y2S1)

EHL 2201 MEDICAL ELECTRONICS II

END SEMESTER EXAMINATIONS

SERIES: DECEMBER, 2013 **TIME:** 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- -Answer question ONE (COMPULSORY) and any other TWO questions
- -You should have a scientific calculator for this paper This paper consists of **4 PRINTED** pages

QUESTION ONE (COMPULSORY)

- (a) With the aid of characteristics, explain the following amplifier classifications. (9 marks)
 - (i) CLASS C
 - (ii) CLASS AB
 - (iii) CLASS B
- **(b)** State **ONE** merit and **ONE** demerit of each of the following amplifier interstage coupling methods
 - (i) DC Coupling
 - (ii) RC Coupling
 - (iii) Transformer coupling.

(6 marks)

- (c) For the class A, CE amplifier circuit of fig 1 If Q=510 Ma. If collector i.e output current $varies\ by\ \pm$ 260 mA when an input signal is applied and the base, calculate.
 - (i) total dc. Power taken by the circuit
 - (ii) dc power dissipated by the collector load
 - (iv) ac power developed across the load
 - (v) power delivered to the transistor
 - (vi) dc power wasted in transistor collector
 - (vii) overall efficiency
 - (viii) collector efficiency

(15 marks)

QUESTION TWO

(a)	Drav	w a flow chart showing power contribution in a class A RC coupled amplifier.	(6 marks)							
(b) For the transformer coupled optimally-biased class –A amplifier in fig 2 find										
	(i) (ii) (ii)	Transformer turns ratio Collector current Transistor power rating	(14 marks)							
OIII		ON THIRE								
QUI	7211	ON THREE								
(a)	(i) (ii)	Draw the circuit of a transformer push-pull amplifier. Explain the operation of the circuit in (i) above	(10 marks)							
(b)	A power transistor is used in a CE amplifier meant for class- A operation. If zero signal power dissipation is 10 W and ac output power is 3.5 W, find									
	(i) (ii)	Collector efficiency Power rating if the transistor.	(4 marks)							
(c)	An a	amplifier has an input signal of 16V peak to-peak and an input impedance of 32	Ω 0 k .							
	_	ives an output voltage of 8 V peak to peak across a load resistor of 4 . Calculer gain of the amplifier.	ate the dB (6 marks)							

QUESTION FOUR

(:	a)	$\mathbf{E}\mathbf{x}_{1}$	nlain	the	follox	ving	ami	nlifier	sional	dis	tortion	and	the	cause:
η,	ı,	LA	piani	uic	101101	wing.	am	pilitici	Signai	ars	tor trom	ana	uic	cause.

- (i) Non linear distortion
- (ii) Intermodulation distortion
- (iii) Frequency distortion.

(6 marks)

- (b) The signal input to a small signal amplifier consists of 50μW of signal power and 0.5μW of noise power. The amplifier generates an internal noise power of 50μW and has a gain of 20dB. Calculate;
 - (i) Input S/N ratio
 - (ii) Output S/N
 - (iii) Noise factor
 - (iv) Noise figure

(14 marks)

QUESTION FIVE

- (a) Draw the power rectangle for a class A RC coupled CE connected power amplifier and indicate the following regions;
 - (i) Total average power supplied to the circuit by Vcc battery
 - (ii) Power lost as heat in the load resistor
 - (iii) Power delivered to transistor
 - (iv) a.c. power across RC (a.c. power output)
 - (v) Power dissipated by collector region of transistor.

(14 marks)

(b) Draw a collector tuned single stage amplifier and its response curve.

(4 marks)

(c) The input and output voltages of a networks are 16V and 8V respectively. If input impedances are equal, calculate the voltage gain in dB (2 marks)