

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology

DEPARTMENT OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

DIPLOMA IN INFORMATION COMMUNICATION TECHNOLOGY DICT 10A, DIT 2K 10J, DIT 10M

EIT 2103 ECS 2215 ECS 2208: COMPUTATIONAL MATHEMATICS

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: OCTOBER 2011

TIME: 2 HOURS

 Instructions to Candidates:

 You should have the following for this examination

 • Answer booklet

 Answer question ONE (COMPULSORY) in section A and any other TWO questions from section B

 This paper consists of THREE printed pages

Maximum marks for each part of a question are clearly shown.

SECTION A (30 marks)

Question 1 (Compulsory)

a) Solve

(i)
$$\frac{2}{x+1} - \frac{1}{x-2} = -1$$
$$2(x-2)^2 - 4 = y$$
$$4x - y = 2$$
(ii)

- b) Using 4 bit representation, evaluate the following arithmetic's in two's complement notation.
 - (i) 14 8 (ii) 7 – 13

c) Draw the symbol of a three input NOR operator and list all the possible outputs.	(4 marks)
d) Represent 13 as a BCD with the following methods Excess 3 and 2421	(4 marks)
e) Describe how Repetition Codes can be used as an error detection scheme	(3 marks)
f) Outline FOUR sources of errors in a transmitted signal	(3 marks)
g) Name TWO alphanumeric coding systems in use today	(2 marks)

SECTION B (40 marks)

Question 2 (20 marks)

a)	Form a system of NAND gates that can perform the operation of NOR gate	(4 marks)	
b)	Draw a truth table for $P^{\cdot}T^{\cdot}$ (P+Z).	(4 marks)	
	Draw the logic circuit for the Boolean expression (A+C). (AD A. \overline{D}) +A.C+C and re circuit with equivalent output and provide it's truth table.	present a simple (12 marks)	
Question 3 (20 marks)			
a)	Represent the binary equivalent of decimal number 237 in gray code	(4 marks)	
b)	Difference between weighted and Non-weighted codes	(4 marks)	

c) Using the method of 4-bit two's complement evaluate the following

- (i) 7 13(ii) 11 - 5
- d) Solve 713 975 in BCD

Question 4 (20 marks)

a) Find the solution set for the following system of equations. Use crammer's rule 4x - 2y - 3z = 8 5x + 3y - 4z = 46x - 4y - 5z = 12

(10 marks)

(6 marks)

b) Expand the expression $(x + y)^7$. Using the expansion, approximate the value of 1.9^7 to 3.d.p (5)

marks)

 c) Peter and Njeri travelled from Mombasa to Nairobi through a distance of 400km. Njeri left Mombasa half an hour ealier than Peter. Njeri arrived two hours later after Peter did. If Peter was travelling at 20km//h faster than Njeri, determine the Peter's Speed. (5 marks)

Question 5 (20 marks)

a)	List any FOUR sources of errors in a transmitted signal	(4 marks)
b)	Explain the effects of errors in a transmitted signal affect communication	(6 marks)
c)	Differentiate the Parity check and Repetition code as error detection methods	(6 marks)
1\		

- d) Rewrite the signals provided below with both even and odd parity check
 (i) 1010111
 - (ii) 1001101