

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology

DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING

DIPLOMA IN MARINE ENGINEERING (DMAE 6)

EMR 2318 APPLIED MECHANICS III

END OF SEMESTER EXAMINATIONS SERIES: DECEMBER, 2013 TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. You should have the following for this examination:
 - Answer Booklet
 - Non-programmable Scientific Calculator
- 2. This paper consists of **FIVE** Questions.
- 3. Answer Question **ONE (Compulsory)**, **ONE** Question from Section **B** and **ONE** Question from Section **C**.
- 4. This paper consists of THREE printed pages. SECTION A : (Compulsory)

Question ONE

- (a) Using sketches, explain the principle of superposition for the slope and deflection of a beam loaded simultaneously with a point load at its center and a uniformly distributed load along its length. (Assume the beam is simply supported at the free ends and is of uniform cross-section). (10 marks)
- (b) (i) List any **FOUR** classes of gear drives based on the position of their axes.
 - (ii) State the **FOUR** design consideration for a gear drive.

(6 marks)

- (c) With the aid of sketches explain the meaning of the following terms:
 - (i) Helix angle
 - (ii) Axial pitch
 - (iii) Normal pitch

(4 marks)

SECTION B : (Answer only **ONE** Question)

Question TWO

- (a) A 4m long cantilever beam has a point load of 5KN at the free and with UDL of 1KN/m 1m from the free end a flexural stiffness of 53.3MNm². Calculate the slope and deflection at the free end.
 (10 marks)
- (b) A 8m long simply supported beam with a uniformly distributed load of 10KN/m has a 4mm deflection at its midpoint. Calculate the gradient at its free ends. (10 marks)

Question THREE

(a) A simply supported beam of rectangular cross-section has a length of 4m and a depth of 150mm. It carries a 10KN point load at its midpoint and a uniformly distributed load of 10KN/m extending 1m from left end has a second moment of Area of 2.8 x10⁻⁵m⁴. Assuming the weight of the beam is negligible; calculate the maximum stresses the beam can bear.

(14 marks)

(b) Explain **THREE** factors that determine the amount of bending of a beam. (6 marks)

SECTION C - (Answer ONE Question from this Section)

Question FOUR

In the epicyclic train shown in Figure 1(c), wheel S is supplied with 3.5kW at 1450r.p.m. P and P₂ is one cast. The number of teeth in the gear wheels are: S, 16; A₁, 102; P₂, 44 and A₂, 103. Determine:

- (a) Speed and direction of rotation of A_2 with A_1 fixed
- (b) Fixing torque required at A₁

(20 marks)

Question FIVE

Two parallel shaft X and Y are to be connected by foothed wheels, wheels A and B form a compound pair which can slide along, but rotate with, shaft X; wheels C and D are rigidly attached to shaft Y, and the compound pair may be moved so that A engages with C, or B engages with D.

Shaft X rotates at 640rev/min and the speeds of shaft Y are to be 340 rev/min exactly, and 240 rev/min as nearly as possible. Using a module of 12 for all wheels, determine:

- (a) The minimum distance between the shaft axes
- (b) The suitable tooth numbers for the wheels
- (c) The lower speed of Y

(20 marks)