

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Applied & Health Sciences

DEPARTMENT OF PURE AND APPLIED SCIENCES

DIPLOMA IN SCIENCE LABORATORY TECHNOLOGY(DSLT 09A)

END OF SEMESTER EXAMINATION

ACH 2309: CHEMICAL ANALYTICAL TECHNIQUES

SERIES: AUGUST/SEPTEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet

This paper consists of **FIVE** questions.

Answer question **ONE** (**COMPULSORY**) and choose any other **TWO** questions

This paper consist of **THREE** printed pages

QUESTION ONE (COMPULSORY)

a)	Using labeled	sketches,	explain	the	conductometric	titration	curves	obtained	in	each	of	the
	following											

 $CH_3COOH \qquad NH_4OH$ i) against (6 marks) $HCl \qquad NH_4OH$...

ii) against (4 marks)

b) State two advantages of conductometric titration over acid base indicator method S_n^{H+} (2 marks)

$$mg + 5n^{4+} \rightarrow Mg^{2+} 5n^{2+}$$

- c) Given the reaction Sn^{2+}
 - i) Identify the type of reaction and explain (4 marks)
 - ii) Identify the reductant and write its equation (2 marks)
- d) Find the oxidation number of:

Mn in $KMnO_4$

- i) Cl in HClO₃
- ii) $N in HNO_3$
- iii) $Cr in Cr_2O_7^{2-}$
- iv) $V in VO_2^+$
- v) Cl in HClO₄

vi) (12 marks)

QUESTION TWO

- a) Electrolytic conductivity of an electrolyte can be determined experimentally by use of a Wheatstone bridge circuit
 - i) Draw a fully labeled diagram of the circuit (8 marks)
 - ii) State the function of each component in the circuit (6 marks)
 - iii) Give the name used to describe the type of water used in making solutions for conductivity measurement (1 mark)
 - iv) Direct current DC is unsuitable for work on conductivity. Give TWO reasons.

(2 marks)

b) List THREE factors that determine the resistance of a solution of an electrolyte

(3 marks)

QUESTION THREE

Use the following list of standard electrode potentials to answer the questions that follow.

Half Cell Reaction E° Volts $Mg^{2+} + 2e \to Mg_{(s)}$ -2.38 $Al^{3+} + 3e \to Al_{(s)}$ -1.68 $Cr_2O_7^{2-} + 14H^+ + 6e \to 2Cr^{3+} + 4H_2O$ +1.33 $Cl_2 + 2e \to 2Cl^-$ +1.36 $Fe^{3+} + e \to Fe^{2+}$ +0.77 $Zn^{2+} + 2e \to Zn$ -0.76 $Br_2 + 2e \to 2Br -$

- a) Identify;
 - i) The strongest oxidizing agent
 - ii) The strongest reducing agent (2 marks)

+1.09

$$Fe^{3+}, Fe^{2+}$$
 Zn/Zn^{2+}

- b) From and half cells
 - i) Draw a labeled diagram of the cell formed from the two electrodes and indicate on the diagram the direction of electron flow (5 marks)
 - ii) Write the cell representation stating what each symbol you use represent

(4 marks)

- iii) Write the equation for the cell reaction taking place (1 mark)
- iv) Calculate the equilibrium constant for the cell reaction (3 marks)
- c) For the half cell reaction

$$Cr_2O_7^{2-} + 14H^+ + 6e \rightarrow 2Cr^{3+} + 7H_2O$$

. Calculate the electrode potential if the hydrogen ion concentration was changed to 0.01 leaving the concentration of the other unchanged.

(5 marks)

QUESTION FOUR

- a) Using a labeled diagram of a specific electrochemical cell discuss the role of the salt bridge in the electrochemical cell (15 marks)
- b) Electrochemical cells can be classified into two classes on the basis of energy conversion
 - i) Name the **TWO** classes

(2 marks)

- ii) Name the class the electrochemical cell in your diagram in 4(a) above belong (1 mark)
- c) State **TWO** other items that can be used in place of salt bridge to achieve the same objective (2

marks) **QUESTION FIVE**

a) State Kohlrausch's Law

(2 marks)

- b) A solution containing 6g of ethanoic acid per dm³ has an electrolytic conductivity of $5.21 \times \Omega^{-1}M^{-1}$ 10^{-2} at 25°C. The molar conductivities at infinite dilution at this temperature for the $CH_2COO^ H^+$ $\Omega^{-1}M^2$ ions and are 3.498×10^{-2} and 0.412×10^{-2} mol⁻¹ respectively. Calculate the degree of dissociation of ethanoic acid (8 marks)
- c) Describe how the solubility of a slightly soluble silver chloride can be determined by conductivity measurement (10 marks)