

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)

(A Centre of Excellence) Faculty of Applied & Health

Sciences

DEPARTMENT OF MEDICAL SCIENCES

DIPLOMA IN PHARMACEUTICAL TECHNOLOLOGY (DPT 12J)

ACH 2214: PHYSICAL CHEMISTRY

END OF SEMESTER EXAMINATION SERIES: AUGUST 2012 TIME: 3 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

Attempt ALL questions in section A by choosing the correct answer

Attempt ALL question in section **B** and any **TWO** question on section **C**

This paper consists of **NINE** printed pages

SECTION A (ANSWER ALL QUESTIONS – 1 MARK EACH)

- 1. Which of the following is not consistent about redox reactions:
 - a) A redox reaction involves oxidation and reduction half reactions
 - b) A redox reaction may be viewed in terms of oxygen transfer among reactants
 - c) A redox reaction may be viewed in terms of electron transfer
 - d) A redox reaction may not involve hydrogen transfer
- 2. Which of the following is not consistent about solubility
 - a) It is dependent on temperature
 - b) It is independent of temperature
 - c) It depends on the nature of solute
 - d) It depends on the nature of solvent
- 3. The value of the equilibrium constant Kc for a given reaction is only dependent on:
 - a) Catalyst
 - b) Temperature
 - c) Concentration of species involved
 - d) Pressure
- **4.** An aqueous solution can best be defined as:
 - a) A homogeneous mixture
 - b) A heterogeneous mixture
 - c) A mixture of solute and solvent system of large molar mass
 - d) A uniform mixture where the solute is initially liquid or solid and the solvent is water
- 5. Which of the following statements about the kinetics of the reaction.

 $H_{2(g)} + Br_{2(g)} - HBr_{(g)}$ is definitely true? Given that Rate = K [Br₂] [H₂]₂

- a) The reaction is first order with respect to bromine, Br₂
- b) The reaction is second order overall
- c) The presence of hydrogen bromide, HBr, inhibits the rate of the reaction
- d) It is not possible to determine anything about the kinetics of the reaction from the stoichiometry
- 6. Calculate the concentration of hydronium, H_3O^+ , ions in a solution whose PH = 4.3.
 - **a)** 2.0 x 10^3 moldm⁻³
 - **b)** 5.0 x 10^{-5} moldm⁻³
 - c) $14 \times 10^{-3} \mod m^{-3}$
 - **d)** 74 mold m^{-3}
- 7. Calculate the concentration of OH⁻ ions in a solution whose $P^{H} = 12.1$
 - a) 79.4 moldm⁻³
 - b) 7.94 x 10^{-13} moldm⁻³
 - c) 1.90 moldm^{-3}

- d) 0.0126 moldm⁻³
- 8. Calculate the P^{H} of an aqueous solution of HCN acid of concentration 0.088M. The acidity constant for HCN is 4.9 x 10⁻¹⁰.
 - a) 6.57
 - b) 8.82
 - c) 5.18
 - d) 7.43
- 9. In a titration, 2.7cm^3 of 0.1 M NaoH is added to 25.0cm^3 of 0.125 M benzoic acid (C₆H₅ COOH), solution. Calculate the PH of the resulting solution given that the PKa of benzoic acid is 4.19.
 - a) 3.13
 - b) 5.25
 - c) 1.74
 - d) 6.67
- 10. Calculate the concentration of CI^{-} ions in an aqueous solution formed by adding $PbCl_2$ to water. The solubility constant of $PbCl_2$ is 1.6 x 10⁻⁵ moldm⁻³.
 - a) 0.025 moldm^{-3}
 - b) 0.004 moldm⁻³
 - c) 0.032 moldm^{-3}
 - d) 0.050moldm^{-3}

11. During a chemical reaction the concentration of reactions:

- a) Does not change
- b) Increases
- c) Decreases
- d) May increase
- 12. Chemical equilibrium establishes if a reaction takes place in:
 - a) A closed system
 - b) An open system
 - c) Gaseous state
 - d) Liquid state
- 13. The decrease in concentration of reactants ______as the increase in the concentration of products.
 - a) May be the same
 - b) Is the same
 - c) Is not the same
 - d) May not be the same
- - a) Arrhenius
 - b) Bronsted
 - c) Lowry
 - d) Lewis

- 15. Hydrogen ion concentration is equal to hydroxyl ion concentration in.
 - a) Pure water
 - b) Sodium hydroxide
 - c) Hydrogen chloride
 - d) CH₃COOH
- 16. The concentration of H^+ ion in pure water is:
 - a) $1.0 \ge 10^{-7} \text{ moldm}^{-3}$
 - b) $-7.0 \times 10^1 \text{ moldm}^{-3}$
 - c) 7.0moldm⁻³
 - d) $7.0 \times 10^1 \text{ moldm}^{-3}$
- 17. The P^H of an acidic solution is:
 - a) 7
 - b) More than 7
 - c) Less than 7
 - d) Negative
- 18. The PH of basic solution is:
 - a) 7
 - b) More than 7
 - c) Less than 7
 - d) Negative
- 19. A solution is neutral when its P^{H} is:
 - a) 0
 - b) 7
 - c) -7
 - d) 10⁻⁷
- **20.** What is the unit of the rate of a reaction?
 - a) Molar
 - b) Second
 - c) Molar/second
 - d) Mole/second
- 21. Which ion from the following is released from an acid according to Arrhenius theory?
 - a) H⁺
 - b) OH-
 - c) N⁻
 - 2-2
 - d) O
- 22. In PH scale the base of the logarithm of molar concentration of $\mathrm{H_{3}O^{+}}$ is:

a) 10

- b) 20
- c) 50
- d) 100

23. The reaction between an acid and a base is ______ reaction.

- a) Chlorination
- b) Hydrolysis
- c) Neutralization
- d) Hydrogenation
- 24. $P^{H} + P^{OH} =$
 - a) 0
 - b) 7
 - c) 14
 - d) Between 0 and 7
- 25. What happens when a catalysts is added to a system at equilibrium?
 - a) The reaction follows an alternative pathway of lower activation energy
 - b) The heat of reaction decreases
 - c) The potential energy of the reactions decreases
 - d) The rate of chemical reaction decreases
- 26. Identify the incorrect statement below regarding chemical equilibrium.
 - a) All chemical reactions are, in principle, reversible
 - b) Equilibrium is achieved when the forward reaction rate equals the reverse reaction rate.
 - c) Equilibrium is achieved when the reaction quotient, Q, equals the equilibrium constant
 - d) Equilibrium is achieved when reactant and product concentrations are equal.
- 27. The following reaction is at equilibrium. $CF_2Br_2 \rightleftharpoons CF_2 + 2Br \land \Delta H = +424KJ/mol$. How

will the system respond if the temperature is decreased?

- a) The reaction will shift to the left
- b) The reaction will shift to the right
- c) The reaction will shift right then shift left
- d) There will be no change to the equilibrium position
- 28. The following reaction is at equilibrium.

 $Cl_{2(g)} + 3F_{2(g)} \rightleftharpoons 2ClF_{3(g)}$

How will the system respond if the volume is increased at constant temperative?

- a) The reaction will shift to the left
- b) The reaction will shift to the right
- c) There will be no change to the equilibrium position
- d) The pressure will increase forcing the reaction to shift left.
- 29. Which one of the following is the strongest Arrhenius base given the degree of ionization?
 - a) $Zn(OH)_2 = 1\%$
 - b) LiOH, = 100%
 - c) $Fe(OH)_2 = 2\%$
 - d) Ba $(OH)_2$, = 90%

- 30. Identify the weakest electrolyte among the following;
 - a) KOH
 - b) NH₄OH
 - c) Ca(OH)₂
 - d) Mg(OH)₂

31. If a reaction consists of a series of steps, the ______ is the rate determining step.

- a) Specific rate constant
- b) Smallest
- c) Slowest
- d) Fastest

32. The slope of the graph for reactions or products is ______ at the beginning of a reaction.

- a) Slowest
- b) Steepest
- c) Vertical
- d) Horizontal

33. The ______ of a reaction has units of concentration divided by time.

- a) Rate constant
- b) Order
- c) Rate
- d) Kinetics
- 34. The sum of all the exponents to which the concentrations in a rate equation are raised is called:
 - a) May or may not be the same
 - b) Order of reaction
 - c) Specific rate constant
 - d) Equilibrium constant

35. A reaction is ______ order if it is entirely independent of the concentration of reactants.

- a) Zero
- b) First
- c) Second
- d) Third
- 36. The minimum amount of energy in addition to average kinetic energy which the particles should have in order to have effective collision is called:
 - a) Collision frequency
 - b) Energy barrier
 - c) Activation energy
 - d) Thermal energy

- 37. When rate of forward reaction is equal to the rate of backward reaction, then the equilibrium established is called:
 - a) Chemical equilibrium
 - b) Dynamic equilibrium
 - c) Static equilibrium
 - d) Physical equilibrium
- 38. Chemical equilibrium involving reactants and products in more than one phase is called:
 - a) Static equilibrium
 - b) Dynamic equilibrium
 - c) Homogeneous equilibrium
 - d) Heterogeneous equilibrium
- **39.** The value of Kp is greater than Kc for a gaseous reaction when:
 - a) Number of molecules of products is greater than reactants.
 - **b)** Number of molecules of reactants is greater than the products
 - c) Number of molecules of reactants equal products
 - d) A catalyst is added

40. The equilibrium constant in terms of pressure is denated:

- a) KC_1
- **b)** K¹_C
- **c)** K_P
- **d**) K^{1}_{P}

SECTION B (ATTEMPT ALL QUESTIONS)

41. What is the pH of a 0.25M NaOH solution?	41.	e pH of a 0.25M	NaOH solution?
--	-----	-----------------	----------------

- 42. Given the molar concentration of hydroxide ion, $[OH^-] = 4.6 \times 10^{-13}$, calculate the concentration of hydrogen ion, $[H^+]$ (4 marks)
- 43. Briefly discuss each of the following:

a) Bronsted base	(2 marks)
b) Bronsted acid	(2 marks)

44. Classify each of the following species in aqueous solutions as bronsted base or acid. Explain.

a) HBr	(2 marks	s)
b) NO_2^-	(2 marks	s)

Use the following reaction to answer question 45 and 46. $Zn_{(s)} + CuSO4_{(aq)} \longrightarrow Cu_{(s)} + ZnSO4_{(aq)}$

45. State and explain the observations made in the above reaction.	(4 marks)
--	-----------

46. From the reaction above, identify the:

(4 marks)

a) Oxidizing agent	(2 marks)
b) Reducing agent	(2 marks)

- 47. Indicate changes in the oxidation numbers of elements in the following reaction. $Fe_{(s)} + H_2O_{(l)} - Fe_2O_3 + 3H_{2(g)}$ (4 marks)
- 48. How many gram of potassium dichromate (K₂Cr₂O₇) are required to prepare a 250ml solution whose concentration is 2.16M? (4 marks)
- 49. Describe how you would prepare 500ml of a 1.75M H₂SO₄ solution, starting with an 8.62M stock solution of H₂SO₄. (4 marks)
- 50. Determine the volume of a 0.610M NaOH solution need to neutralize 20.0ml of 0.245M H₂SO₄ solution. (4 marks)

SECTION C (ATTEMPT ANY TWO QUESTIONS)

51. (a) The equilibrium constants for the synthesis of HCl, HBr and HI in a particular temperature are given below:

 $H_{2(g)} + Cl_{2(g)} \rightleftharpoons 2HCl_{(g)} K_{C} = 1.0 \text{ x } 10^{-7}$

 $\begin{array}{cccc} H_{2\,(g)} + Br_{2\,(g)} & \rightleftharpoons & 2HBr_{(g)} & K_{C} = 1.0 \text{ x } 10^{9} \\ H_{2(g)} + I_{2(g)} & \rightleftharpoons & 2HI_{(g)} & K_{C} = 1.0 \text{ x } 10^{1} \end{array}$

- i) What do the values of K_c tell you about the extent of each reaction? (6 marks)
- ii) Which of these reactions would you regard as virtually complete conversion? Explain your answer. (4 marks)
- (b) The equilibrium constant for the reaction.

 $2NO_{2(g)} \rightleftharpoons N_2O_{4(g)}$ at 298K is 200moldm⁻³

- i) Write an expression for the equilibrium constant for the reaction. (2 marks)
- ii) If the $[N_2O_4] = 2.0 \times 10^{-2} \text{ moldm}^{-3}$ at 298K, what is the concentration of NO₂? (5 marks)
- iii) Calculate the equilibrium constant at 298K for the reaction. (3 marks) $\frac{1}{2}N_2O_4 \rightleftharpoons NO_{2(g)}$

52. (a) At 200°C, K_C for the reaction

 $PCl_{s(g)} \cong PCl_{3(g)} + Cl_{2(g)} \Delta H^{\circ} = +124KJ$

Has a numerical value of 8.0×10^{-3}

i)	Write an expression for K_C for this reaction.	(2 marks)
ii)	What are the units of K _c ,	(1 marks)

© 2012 – The Mombasa Polytechnic University College

iii) What is the value of K_C for the reverse reaction at 200°C and what are its units? (1 mark)

iv) Predict what will happen to the reaction when:

 a) More PCl₅ is added. b) The pressure is increased c) The temperature is increased 	(2 marks) (2 marks) (2 marks)
v) A sample of pure PCl_5 was introduced into an evacuated vessel at 200° obtained, the concentration of PCl_5 was 0.5 x 10 ⁻¹ moldm ⁻³ . What are and Cl_2 at equilibrium?	
(b) What is the PH of a 0.40moldm ⁻³ ammonia solution (NH ₄ OH) given that solution is 1.8 x 10 ⁻⁵ moldm ⁻³ at 25°C	at Kb for ammonia? (6 marks)
53. (a) Benzoic acid (C ₆ H ₅ COOH), is a weak monobasic acid, (Ka = 6.4×10^{-5}	moldm ⁻³)
i) Explain how a mixture of benzoic acid and sodium benzoate (C_6H_5C on the addition of small amounts of either $HCl_{(aq)}$ or $NaOH_{(aq)}$	COONa) can act as a buffer (3 marks)
ii) What is the hydrogen ion concentration in 0.02moldm ⁻³ benzoic acid	? (2 marks)
iii) What is the P^{H} of 0.02moldm ⁻³ benzoic acid?	(2 marks)
 iv) What is the P^H of a solution containing 7.2g of sodium benzoate in 1 ³benzoic acid? 	L solution of 0.02 moldm ⁻ (4 marks)
 v) By how much will the PH change if 1cm³ of 1.0moldm⁻³ NaOH is (d) above? 	added to the buffer in part (3 marks)
(b) Explain the following terms:	
i) Rate constantii) Activated state	(3 marks) (3 marks)
nj Activated state	(S marks)