

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

DIPLOMA IN BUILDING & CIVIL ENGINEERING DIPLOMA IN CIVIL ENGINEERING DIPLOMA IN ARCHITECTURE

ACH 2125: CHEMISTRY

SPECIAL/SUPPLEMENTARY EXAMINATON

SERIES: OCTOBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

• Answer booklet

This paper consists of **FIVE** questions. Answer question **ONE** (**COMPULSORY**) and any other **TWO** questions

Maximum marks for each part of a question are as shown This paper consists of **FIVE** printed pages

SECTION A (COMPULSORY)

Question 1

a) The grid given below represents part of the periodic table. Study it and answer the questions that follow. (The letters do not represents the actual symbol of the elements)

				Α
		B		
С	D		Е	
F				

	i) ii) iii) iv)	What name is given to the group of elements to which C and F belong? Which letter represents the element that is the least reactive What type of bond is formed when B and E react? Explain Write the electron configuration of D. What group is it?	(1 mark) (1 mark) (2 marks) (2 marks)
b)	Descri i) ii)	be the changes in electronegativity as we move; Down a periodic group Across the periodic group from left to right	(2 marks) (2 marks)
c)	Use Lo i) ii)	ewis dot symbols to show the formation of: (Indicate lone pairs of electrons if a NH ₃ NaF	applicable) (2 marks) (2 marks)
d)	List T	HREE advantages of radioactivity	(3 marks)
e)	Give t	he formula for the conjugate acid of HSO ₄ -	(1 mark)
f)		ine the term oxidation. $(D_1 + 2QQ_1)$	(2 marks)
	2F	$e_2O_3(s) + 3C(s) \longrightarrow 4Fe(s) + 3CO_2(g)$	
	· · ·	/hich element in the equation above has been oxidized and which has been reduour working.	uced? Show (4 marks)
	(iii) I	dentify the oxidizing agent and the reducing agent	(2 marks)
	iv) (Give ONE disadvantage of rusting	(2marks)
g)	Define	e a monomer	(2 marks)

SECTION B (Answer any TWO questions from this section)

© 2011 – The Mombasa Polytechnic University College

Question 2

a)	(i) Radioactivity is often called ionization radiation. Why?	(1 mark)		
	$\frac{123}{53}I$			
	(ii) How many half-lives does it take a 10g sample of to drop to 0.039g? What time is this? (half-life is 13.1hour)	length of (3 marks)		
b)	(i) Name the THREE types of radiation	(3 marks)		
	(ii) Give THREE differences between nuclear reactions and chemical reactions	(3marks)		
c)	Of the types of radiation studied, which is least likely to damage you upon extern Which one is most likely? Explain fully.	al exposure? (4 marks)		
d)	State THREE characteristics of alpha particles	(3 marks)		
e)	Complete the following nuclear equations and name the particle Y formed. $x \rightarrow \frac{o}{-1}e + \frac{28}{13}Al$ (i)	(3 marks)		
	$\frac{17}{78}Pt \longrightarrow \frac{166}{76}Os + Y$			
	(ii)			
Question 3				

a)	Differentiate between soft and hard water	(2 marks)

- b) Name **TWO** ways of removing permanent hardness
- c) In an experiment, soap solution was added to three separate samples of water. The table below shows the volumes of soap solution required to form lather with 1000cm³ of each sample of water before and after boiling.

	Sample I	Sample II	Sample III
Volume of soap before water is boiled	27.0	3.0	10.6
Volume of soap water is boiled	27.0	3.0	3.0

(i)	Which water sample is likely to be soft? Explain	(3 marks)
(::)	Which water generals is likely to be hand? Evaluin	$(2 \operatorname{max})$

(ii) Which water sample is likely to be hard? Explain(iii) Which type of hardness was being investigated

(2 marks)

d) The column below was used to soften hard water.

Permut it (contains Na⁺

	(i) (ii) (iii) (iv)	Explain how the hard water softened as it passed through the column. After some time the material in the column is not able to soften hard water. material be reactivated? Give TWO advantages of using soft water for domestic purposes Give TWO disadvantages of using hard water for domestic purposes	(3 marks) How can the (2 marks) (2 marks) (2 marks)
Qı	iestion	4	
a)	Define	e a weak acid	(2 marks)
b)	Identif (i) (ii)	fy the stronger acid in each of the following pairs H ₂ SO ₃ or H ₂ SO ₄ HCN or HCl	(2 marks)
c)	Write	a balanced equation for the dissociation of H_2SO_4 in H_2O	(2 marks)
d)	Give t	he formula for the conjugate base of HNO ₃	(1 mark)
e)		ach of the following reactions, identify the Brosted-Lowry acids and bas gate acid-base pairs	ses and their (4 marks)
	(\mathbf{i})	$H(\Omega_{2}(z_{1})) + H(\Omega_{2}(z_{2})) \rightleftharpoons H(\Omega_{2}^{+}(z_{2})) + \Omega(\Omega_{2}^{+}(z_{2}))$	

(i) $HSO_3(aq) + H_2O(aq) - H_30(aq) + SO_3(aq)$

(ii) $HClO_4(aq) + NH_3(aq) \rightleftharpoons ClO_4(aq) + NH_4(aq)$

- f) A solution prepared by dissolving 0.25g of BaO in enough water to make 0.500L solution. Calculate the pH of the solution (BaO=153g/mol) (4 marks)
- g) (i) In each of the salts below, state the acid and the base to which they were obtained from.

(4 marks)

- Nal
- NH4Cl
- (ii) Classify each of the salt solutions above as acidic, basic or neutral (1 mark)

Question 5

a)	State ONE disadvantage of rusting	(1 mark)
	$NO_3(aq) \longrightarrow NO(g)$	
b)	(i) Determine the oxidation states on N in NO_3^- and NO	(2 marks)
	(ii) Classify the reaction as either an oxidation or reduction	(1 mark)
c)	$4Fe(s) + 3O_2(g) \longrightarrow 2Fe_2O_3(s)$	
	i) Which element has been oxidized and which has been reduced? Show you	
	ii) Identify the oxidizing agent and the reducing agent	(4 marks) (2 marks)
d)	Give FOUR applications for Redox reaction	(4 marks)
e)	Give TWO applications of nylon	(2 marks)
f)	Show the structure of polyvinyl chroride (PVC) by drawing three repeating u is H_2C =CHCl	nits. Vinyl chrolide (2 marks)
g)	Show the monomer units you would use to prepare the following polymer	(2 marks)