

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE Faculty of Engineering & Technology

DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING

DIPLOMA IN MECHANICAL ENGINEEERING (PLANT OPTION)

STAGE II SEMESTER II EXAMINATIONS

SERIES: APRIL/MAY 2010

PRODUCTION TECHNOLOGY & METROLOGY

TIME: 2 HOURS

Instructions to Candidates

You should have the following for this examination:

- TWO Answer Booklet
- Drawing Instruments
- Scientific Calculator

This paper consists of **FIVE** Questions in **TWO** Sections **A** and **B**. Answer any **TWO** Questions from Section **A** and **ONE** from Section **B**. All questions carry equal marks.

SECTION A : Answer any TWO Questions from this Section.

Question ONE

(a).	(i).	Name at least THREE methods used in the production of p in powder metallurgy.	owders (3 Marks)
	(ii).	State FIVE objectives of powder metallurgy.	(5 Marks)
(b).	(i).	State FIVE limitations of powder metallurgy.	
	(ii).	With the aid of labeled sketches briefly describe the process making a porous self lubricating bearing.	of (12 Marks)
Que	estion 7	<u>TWO</u>	
(a).	(i).	State FIVE advantages of lost wax casting.	
	(ii).	State THREE limitations of lost wax casting.	(8 Marks)
(b).	Expla	ain briefly the process of pattern making in lost wax process.	(6 Marks)
(c).	(i).	List FOUR advantages of honing.	
	(ii).	Briefly explain the process of honing.	(6 Marks)
<u>Que</u>	estion 1	THREE	
(a).	Define the following terms:		
	(i). (ii). (iii).	Blanking Piercing Drawing	(3 Marks)
(b).	(i).	Show a set up of a set of blanking and piercing die, label the	main parts.
	(ii).	State FOUR factors that determine the design of a blanking	die. (7 Marks)
(c).	Explain the use of the following parts in press work:		
	(i). (ii). (iii). (iv).	Punch Die Stupper Pressure plate	(4 Marks)

- (d). In a deep drawing operation a cup is to be drawn to a diameter of 80.3 x 50mm deep in a 0.4mm thick material. The ultimate tensile strength is 500N/mm², approximate:
 - (i). The blank diameter
 - (ii). The drawing ratio
 - (iii). The maximum drawing force

(6 Marks)

SECTION B: METROLOGY

Question FOUR

- (a). (i). What is kinematics.
 - (ii). State the theorem of kinematics.
 - (iii). Use a sketch to illustrate the theorem in a (ii). above.
 - (iv). State the characteristics achieved when kinematic principle are followed in design of machines and instruments. (6 Marks)
- (b). State the conditions to be satisfied when mounting a surface plate on a stand. (4 Marks)
- (c). State the **THREE** conditions to be realized during manufacture of moving member of a vee-flat ball slide to have true linear motion. (3 Marks)
- (d). Explain briefly with the aid of a sketch the operational principle of the Autocollimator. (7 Marks)

Question FIVE

- (a). Explain briefly the with the aid of a sketch the operational principle of the roundness testing machine. (9 Marks)
- (b). (i). State the **FOUR** methods of finding the roundness error.
 - (ii). Discuss briefly the most accurate method, of the FOUR methods in b(i). above. (4 Marks)
- (c). With the aid of a sketch, explain how the squareness of try-square may be checked using the Auto-collimeter. (7 Marks)