Faculty of Engineering \& Technology

DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING

DIPLOMA IN CHEMICAL ENGINEERING
 DIPLOMA IN AUTOMOTIVE ENGINEERING

STAGE I SEMESTER II EXAMINATIONS

APRIL/MAY 2010 SERIES

PHYSICAL SCIENCE

TIME: 2 HOURS

Instructions to Candidates

You should have the following for this examination:

- Two Answer Booklets
- Scientific Calculator
- Mathematical table

The paper consists of THREE Section A, B and C.
Question ONE is compulsory.
Answer ONE Question from Section B and ONE from Section C.
All questions marks from each part of a question are as shown.
Maximum marks from each part of a question are as shown.

SECTION A

Question ONE

(a). (i). State the laws of refraction.
(ii). A ray of light is incident in water at an angle of; (I). 30°, (II). 70° on a water glass plane surface. Calculate the angle of refraction in the glass in each case.
Take $a n_{g}=1.5, \quad a n_{w}=1.33$
(iii). Calculate the critical angle for an air glass surface and draw a diagram illustrating the total internal reflection of a ray incident on the surface $a n_{g}=1.5$.
(10 Marks)
(b). Define;
(i). The standard heat of formation.
(ii). The standard heat of combustion.
(c). Given that the standard heats of combustion of butanol $\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right)$, carbon and hydrogen are $-2671,-393$ and $-286 \mathrm{KJ} / \mathrm{mol}$ respectively, calculate with the aid of an energy cycle diagram the heat of formation of butanol.
(10 Marks)

SECTION B - Answer ONE Question

Question TWO

(a). Determine the oxidation number of chromium in the following species:
(i). CrO_{3}
(ii). $\mathrm{CrO}^{2-}{ }_{4}$
(iii). $\mathrm{Cr}_{2} \mathrm{O}^{2-}{ }_{7}$
(iv). $\mathrm{Cr}_{2} \mathrm{O}_{3}$
(v).
$\mathrm{CrO}^{2+}{ }_{2}$
(5 Marks)
(b). State what has been reduced and what has been oxidized in the following equations:
(i). $\mathrm{CuO}+\mathrm{H}_{2} \rightarrow \mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}$
(ii). $2 \mathrm{FeCl}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{FeCl}_{3}$
(4 Marks)
(c). Obtain separate half-equations and hence overall equation for the redox reaction between MuO_{4}^{-}and $\mathrm{SO}_{4}{ }^{2-}$.
(7 Marks)
(d). A galvanic cell consists of a silver electrode in $1.0 \mathrm{M} \mathrm{Ag}^{+}$solution and an iron electrode in $1.0 \mathrm{M} \mathrm{Fe}^{2+}$ solution. Calculate the emf of the cell and write the overall reaction given:
$\mathrm{Ag}^{+}+e \rightarrow \mathrm{Ag} \quad E^{o}=0.80 \mathrm{~V}$

$$
\mathrm{Fe}^{2+}+2 e \rightarrow \mathrm{Fe} \quad E^{o}=-0.44 \mathrm{~V}
$$

Question THREE

(a). Draw a diagram showing how the apparatus for the determination of the standard electrode potential of $\mathrm{Fe}^{3+}{ }_{(a q)} / \mathrm{Fe}^{2+}{ }_{(a q)}$ would be assembled. (4 Marks)
(b). Use chemical equations to illustrate how $\mathrm{HSO}_{4}{ }^{-}$can act as:
(i). Arrhenius and
(ii). Bronsted - Lowry acid
(iii). Bronsted - Lowry base
(3 Marks)
(c). Identify the conjugate acid - base pairs in the following reactions:
(i). $\mathrm{NH}_{4}^{+}+\mathrm{oH}^{-} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
(ii). $2 \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{S}^{2-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{~S}$
(4 Marks)
(d). Calculate the P^{H} of the following:
(i). $\quad 0.02 \mathrm{M} \quad \mathrm{H}_{3} \mathrm{PO}_{4}$
(ii). $\quad 0.02 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$
(4 Marks)
(e). Write the structural formula of all compounds having the formula $\mathrm{C}_{6} \mathrm{H}_{14}$ and name them.
(5 Marks)

SECTION C - Answer ONE Question

Question FOUR

(a). Using a diagram explain the essential features of the astronomical telescope. Define and deduce an expression for the magnifying power.
(7 Marks)
(b). (i). Explain the differences between light and sound waves.
(ii). Describe a simple experiment you would perform to determine the velocity of sound using the echo method.
(iii). A person sanding 99m from the foot of a tall cliff claps his hands and hears an echo 0.6 seconds later. Calculate the velocity of sound in air.
(13 Marks)

Question FIVE

(a). (i). Define the terms:
(I). Wavelength
(II). Amplitude
(III). Super position of waves
(ii). Show that the velocity of a particle of any instant in a ware is given by:

$$
V=\frac{2 \pi a}{T} \cos 2 \pi\left(\frac{t}{T}-\frac{x}{y}\right)
$$

(12 Marks)

(b). (i). Define diffraction.
(ii). Describe with aid of diagrams what happens when a plane waves are incident on the gap between two obstacles as in a ripple tank.
(8 Marks)

