

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE Faculty of Engineering & Technology

DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING

DIPLOMA IN CHEMICAL ENGINEERING DIPLOMA IN AUTOMOTIVE ENGINEERING

STAGE I SEMESTER II EXAMINATIONS

APRIL/MAY 2010 SERIES

PHYSICAL SCIENCE

TIME: 2 HOURS

Instructions to Candidates

You should have the following for this examination:

- Two Answer Booklets
- Scientific Calculator
- Mathematical table

The paper consists of **THREE** Section **A**, **B** and **C**. Question **ONE** is compulsory. Answer **ONE** Question from Section **B** and **ONE** from Section **C**. All questions marks from each part of a question are as shown. Maximum marks from each part of a question are as shown.

©2010 Department of Mechanical and Automotive Engineering

SECTION A

Question ONE

- (a). (i). State the laws of refraction.
 - (ii). A ray of light is incident in water at an angle of; (I). 30° , (II). 70° on a water glass plane surface. Calculate the angle of refraction in the glass in each case. Take $an_g = 1.5$, $an_w = 1.33$
 - (iii). Calculate the critical angle for an air glass surface and draw a diagram illustrating the total internal reflection of a ray incident on the surface $an_g = 1.5$.

(10 Marks)

- (b). Define;
 - (i). The standard heat of formation.
 - (ii). The standard heat of combustion.
- (c). Given that the standard heats of combustion of butanol ($C_4H_{10}O$), carbon and hydrogen are -2671, -393 and -286KJ/mol respectively, calculate with the aid of an energy cycle diagram the heat of formation of butanol. (10 Marks)

SECTION B - Answer ONE Question

Question TWO

(a). Determine the oxidation number of chromium in the following species:

(i). CrO_3 (ii). CrO^{2-}_4 (iii). $Cr_2O^{2-}_7$ (iv). Cr_2O_3 (v). CrO^{2+}_2

(5 Marks)

(b). State what has been reduced and what has been oxidized in the following equations:

(i).
$$CuO + H_2 \rightarrow Cu + H_2O$$

- (ii). $2FeCl_2 + Cl_2 \rightarrow FeCl_3$ (4 Marks)
- (c). Obtain separate half-equations and hence overall equation for the redox reaction between MuO_4^{-} and SO_4^{-2-} . (7 Marks)
- (d). A galvanic cell consists of a silver electrode in $1.0M \text{ Ag}^+$ solution and an iron electrode in $1.0M \text{ Fe}^{2+}$ solution. Calculate the emf of the cell and write the overall reaction given:

 $Ag^+ + e \rightarrow Ag$ $E^0 = 0.80V$

© Department of Mechanical and Automotive Engineering 2

$Fe^{2+} + 2e \rightarrow Fe$	$E^{O} = -0.44V$
Question THREE	

- (a). Draw a diagram showing how the apparatus for the determination of the standard electrode potential of $Fe^{3+}_{(aq)} / Fe^{2+}_{(aq)}$ would be assembled. (4 Marks)
- Use chemical equations to illustrate how HSO_4^- can act as: (b).
 - (i). Arrhenius and
 - Bronsted Lowry acid (ii).
 - Bronsted Lowry base (iii).

(3 Marks)

- (c). Identify the conjugate acid – base pairs in the following reactions:
 - $NH_4^+ + oH^- \rightarrow NH_3 + H_2O$ (i). $2H_3O^+ + S^{2-} \rightarrow 2H_2O + H_2S$ (ii).

(4 Marks)

- Calculate the P^H of the following: (d).
 - (i). 0.02M H₃PO₄
 - 0.02M Ca(OH)₂ (ii).

(4 Marks)

Write the structural formula of all compounds having the formula C₆H₁₄ and name (e). them. (5 Marks)

SECTION C - Answer ONE Question

Question FOUR

- Using a diagram explain the essential features of the astronomical telescope. Define (a). and deduce an expression for the magnifying power. (7 Marks)
- (b). (i). Explain the differences between light and sound waves.
 - (ii). Describe a simple experiment you would perform to determine the velocity of sound using the echo method.
 - (iii). A person sanding 99m from the foot of a tall cliff claps his hands and hears an echo 0.6 seconds later. Calculate the velocity of sound in air. (13 Marks)

© Department of Mechanical and Automotive Engineering

Question FIVE

- (a). (i). Define the terms:
 - (I). Wavelength
 - (II). Amplitude
 - (III). Super position of waves
 - (ii). Show that the velocity of a particle of any instant in a ware is given by:

$$V = \frac{2\pi a}{T} \cos 2\pi \left(\frac{t}{T} - \frac{x}{y}\right)$$

- (b). (i). Define diffraction.
 - (ii). Describe with aid of diagrams what happens when a plane waves are incident on the gap between two obstacles as in a ripple tank.

(8 Marks)

(12 Marks)