THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE (A CONSTITUENT COLLEGE OF JKUAT)
Faculty of Engineering \& Technology
DEPARTMENT OF ELECTRICAL \& ELECTRONICS ENGINEERING

DEPE 1/DICE I/DTIE I/DEAE I/DMRE I

EEE 2152: PHYSICAL SCIENCE

SUPPLEMENTARY/SPECIAL EXAMINATIONS
SERIES: MAY/JUNE 2012
TIME: 2 HOURS

INSTRUCTIONS:

- Answer any THREE questions.

This paper consists of Five printed pages.

QUESTION 1

a) I) Carbon -14 has a decay constant, $a=3.84 \times 10^{-12} 5$! How long will it take for 99% of a sample of carbon-14 to decay?
II) Explain the use of the following items in a nuclear reactor:
i) Control rods
ii) Moderators
iii) Coolant
b) I) Explain the following terms:
i) Nuclear fusion
ii) Nuclear fission
II) The fusion reaction $4 o^{1} H+2 e^{-} \rightarrow H e+2 V+6 \delta$ ie involves 4 protons (Hydrogen) and electrons to combine and form an alpha particle (He), two neutrinos and six gamma ray s. Given that:
Mass of hydrogen atom is 1.007825 u ,
Mass of Helium atom is 4.0026034 u ,
$1 u=931 \mathrm{Mev}$
Calculate the energy released in Mev.

QUESTION 2

a) I) Distinguish between:
i) Transverse and longitudinal waves
ii) Constructive and destructive interference.
II) Figure 2 shows refraction of a light wavefront OA , travelling from water to air, where it emerge as a Wavefront BC. Calculate:
i) The speed of light in water
ii) The angle of refraction, r, in the air, if the angle of incidence in the water was 30°. (Take speed of light in air $=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$)

Figure 1
b) I) Explain the term Doppler effect and state any two applications.
II) A train travelling at $10 \mathrm{~m} / \mathrm{s}$ is sounding a note of $450 \mathrm{H}_{\mathrm{z}}$ and approaches a stationery observer and then moves away. Calculate the apparent frequency:
i) Towards observer
ii) Away from observer (Take velocity of sound in air $=340 \mathrm{~m} / \mathrm{s}$)

QUESTION 3

a) Define the following terms:
i) Simple harmonic motion
ii) Periodic time
iii) Amplitude
iv) Frequency
b) A child weighing 10 kg is swinging on a simple pendulum of length 3 m . If the force due to gravity is $9.8 \mathrm{~N} / \mathrm{Kg}$, and the angle of displacement is 30°, calculate:
i) Frequency of swinging
ii) Periodic time
iii) The restoring force
iv) Tension on the string
c) I) Define the following terms:
i) Fundamental frequency
ii) Harmonics
II) A vibrating string vibrates with a fundamental frequency of $230 \mathrm{H}_{\mathrm{Z}}$ IF The velocity of sound is $330 \mathrm{~m} / \mathrm{s}$, calculate:
i) Wavelength of sound
ii) The length of the string
iii) The second and third harmonics of the fundamental frequency.

QUESTION 4

a) I) Define the following terms:
i) Heat
ii) Specific heat capacity
iii) Specific latent heat of fusion
II) A cup of coffee measuring 200 g is at $100^{\circ} \mathrm{C}$. How much will it be cooled, if 50 g of ice at $0^{\circ} \mathrm{C}$ is added to the coffee?
(Take specific heat capacity of water $=1 \mathrm{cal} / \mathrm{gm}^{0} \mathrm{C}$, specific latent heat of fusion of ice $=$ $79.7 \mathrm{cal} / \mathrm{gm}$
b) I) State the following gas laws:
i) Charles' law
ii) Boyles' law
iii) Pressure law
II) A bicycle pump holds $60 \mathrm{~cm}^{3}$ of air when the piston is drawn out. The air is initially at $25^{\circ} \mathrm{C}$ and pressure of 120 KPa . When the air is forced in, its volume is reduced to $25 \mathrm{~cm}^{3}$ and temperature rises to $40^{\circ} \mathrm{C}$, Calculate the pressure of air as it is forced into the tyre.
c) I) Explain the kinetic theory of gases.
II) State any THREE assumptions of kinetic theory of gases.

QUESTION 5

a) I) Define the following terms:
i) Atomic number
ii) Mass number
II) The element Argon can be represented as ${ }_{18}^{40} \mathrm{Ar}$. Write down the number of protons, electrons and neutrons present in an atome of Argon.
b) I) Define the isotope.
II) The table below shows the number of protons and neutrons in elements G, H, I and J (not actual symbols)

Element	G	H	I	J
Number of protons	3	17	19	19
Number of neutrons	4	20	18	22

i) Which of the atoms are isotopes of the same element?
ii) Which atoms have the same mass number?
iii) Write the formula of the compound formed between G and H.
c) i) Define the term electrolysis.
ii) Explain the THREE factors affecting the ions selected for discharge during electrolysis.
iii) State any THREE applications of electrolysis.

